Skip to main content

The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

The bacterial type VI secretion system (T6SS) is a contractile nanomachine dedicated to delivering molecules out of bacterial cells. T6SS-encoding loci are in the genome sequences of many Gram-negative bacteria, and T6SS has been implicated in a plethora of roles. In the majority of cases, the T6SSs deliver effector proteins in a contact-dependent manner to antagonize other bacteria. Current models suggest that the effectors are deployed to influence social interactions in microbial communities. In this chapter, we describe the structure, function, and regulation of the T6SS and its effectors. We provide focus on the T6SS of Agrobacterium tumefaciens, the causative agent of crown gall disease, and relate the role of the T6SS to the ecology of A. tumefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alteri CJ, Himpsl SD, Pickens SR, Lindner JR, Zora JS, Miller JE, Arno PD, Straight SW, Mobley HL (2013) Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog 9:e1003608

    Article  CAS  Google Scholar 

  • Barton IS, Fuqua C, Platt TG (2018) Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 20:16–29

    Article  Google Scholar 

  • Basler VA (2016) Type VI secretion system substrates are transferred and reused among sister cells. Cell 167:99–110

    Article  Google Scholar 

  • Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 370:20150021

    Article  Google Scholar 

  • Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186

    Article  CAS  Google Scholar 

  • Bernal P, Allsopp LP, Filloux A, Llamas MA (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 11:972–987

    Article  CAS  Google Scholar 

  • Bladergroen MR, Badelt K, Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant-Microbe Interact 16:53–64

    Article  CAS  Google Scholar 

  • Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A 113:E3931–E3940

    Article  CAS  Google Scholar 

  • Bonemann G, Pietrosiuk A, Mogk A (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol 76:815–821

    Article  Google Scholar 

  • Borenstein DB, Ringel P, Basler M, Wingreen NS (2015) Established microbial colonies can survive Type VI secretion assault. PLoS Comp Bio 11:e1004520

    Article  Google Scholar 

  • Borgeaud S, Metzger LC, Scrignari T, Blokesch M (2015) The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67

    Article  CAS  Google Scholar 

  • Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genom 10:104

    Article  Google Scholar 

  • Brunet Y, Zoued A, Boyer F, Douzi B, Cascales E (2015) The Type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545

    Article  Google Scholar 

  • Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3:632–640

    Article  CAS  Google Scholar 

  • Canfield ML, Moore LW (1991) Isolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp. from rootstocks of Malus. Phytopathol 81:440–443

    Article  CAS  Google Scholar 

  • Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr (2013) Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE 8:e59388

    Article  CAS  Google Scholar 

  • Chang JH, Desveaux D, Creason AL (2014) The ABCs and 123 s of bacterial secretion systems in plant pathogenesis. Annu Rev Phytopathol 52:317–345

    Article  CAS  Google Scholar 

  • Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A 113:3627–3632

    Article  CAS  Google Scholar 

  • Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The bacterial T6SS effector EvpP prevents NLRP3 inflammasome activation by inhibiting the Ca2+-dependent MAPK-Jnk pathway. Cell Host Microbe 21:47–58

    Article  CAS  Google Scholar 

  • Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih MC (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 6:32950

    Article  CAS  Google Scholar 

  • Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M, Coulthurst SJ (2016a) VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12:e1005735

    Article  Google Scholar 

  • Cianfanelli FR, Monlezun L, Coulthurst SJ (2016b) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62

    Article  CAS  Google Scholar 

  • Costechareyre D, Rhouma A, Lavire C, Portier P, Chapulliot D, Bertolla F, Boubaker A, Dessaux Y, Nesme X (2010) Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microb Ecol 60:862–872

    Article  CAS  Google Scholar 

  • Driscoll WW, Pepper JW (2010) Theory for the evolution of diffusible external goods. Evolution 64:2682–2687

    Article  Google Scholar 

  • Durand E, Cambillau C, Cascales E, Journet L (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 22:498–507

    Article  CAS  Google Scholar 

  • English G, Trunk K, Rao VA, Srikannathasan V, Hunter WN, Coulthurst SJ (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86:921–936

    Article  CAS  Google Scholar 

  • Faist H, Keller A, Hentschel U, Deeken R (2016) Grapevine (Vitis vinifera) Crown galls host distinct microbiota. Appl Environ Microbiol 82:5542–5552

    Article  CAS  Google Scholar 

  • Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  CAS  Google Scholar 

  • Felisberto-Rodrigues C, Durand E, Aschtgen MS, Blangy S, Ortiz-Lombardia M, Douzi B, Cambillau C, Cascales E (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7:e1002386

    Article  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Mol Biol 51:223–256

    Article  CAS  Google Scholar 

  • Heckel BC, Tomlinson AD, Morton ER, Choi JH, Fuqua C (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196:3221–3233

    Article  Google Scholar 

  • Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37

    Article  CAS  Google Scholar 

  • Hsu F, Schwarz S, Mougous JD (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72:1111–1125

    Article  CAS  Google Scholar 

  • Julou T, Mora T, Guillon L, Croquette V, Schalk IJ, Bensimon D, Desprat N (2013) Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc Natl Acad Sci U S A 110:12577–12582

    Article  CAS  Google Scholar 

  • Kapitein N, Bonemann G, Pietrosiuk A, Seyffer F, Hausser I, Locker JK, Mogk A (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87:1013–1028

    Article  CAS  Google Scholar 

  • Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y (2017) Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 7:45133

    Article  CAS  Google Scholar 

  • Lassalle F et al (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Bio Evol 3:762–781

    Article  CAS  Google Scholar 

  • Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106:4154–4159

    Article  CAS  Google Scholar 

  • Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A 99:12369–12374

    Article  CAS  Google Scholar 

  • Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, Wei G, Qian PY, Luo Z, Shen X (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 8:14888

    Article  CAS  Google Scholar 

  • Lin J, Ma LS, Lai EM (2013) Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS ONE 8:e67647

    Article  CAS  Google Scholar 

  • Lin JS, Pissaridou P, Wu HH, Tsai MD, Filloux A, Lai EM (2018) TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha. J Biol Chem. (In press)

    Google Scholar 

  • Lin JS, Wu HH, Hsu PH, Ma LS, Pang YY, Tsai MD, Lai EM (2014) Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog 10:e1003991

    Article  Google Scholar 

  • Lossi NS, Manoli E, Forster A, Dajani R, Pape T, Freemont P, Filloux A (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 288:7536–7548

    Article  CAS  Google Scholar 

  • Ma AT, Mekalano J (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A 107:4365–4370

    Article  CAS  Google Scholar 

  • Ma LS, Hachani A, Lin JS, Filloux A, Lai EM (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104

    Article  CAS  Google Scholar 

  • Ma LS, Lin J, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191:4316–4329

    Article  CAS  Google Scholar 

  • McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, Hammer BK, Yunker PJ, Ratcliff WC (2017) Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun 8:14371

    Article  CAS  Google Scholar 

  • Miyata ST, Bachmann V, Pukatzki S (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62:663–676

    Article  CAS  Google Scholar 

  • Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    Article  CAS  Google Scholar 

  • Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9:797–803

    Article  CAS  Google Scholar 

  • Nadell CD, Foster KR, Xavier JB (2010) Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6:e1000716

    Article  Google Scholar 

  • Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600

    Article  CAS  Google Scholar 

  • Planamente S, Salih O, Manoli E, Albesa-Jove D, Freemont PS, Filloux A (2016) TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35:1613–1627

    Article  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513

    Article  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533

    Article  CAS  Google Scholar 

  • Rao PS, Yamada Y, Tan YP, Leung KY (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586

    Article  CAS  Google Scholar 

  • Rigard M et al (2016) Francisella tularensis IglG belongs to a novel family of PAAR-like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLoS Pathog 12:e1005821

    Article  Google Scholar 

  • Roest HP, Mulders IH, Spaink HP, Wijffelman CA, Lugtenberg BJ (1997) A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. Mol Plant-Microbe Interact 10:938–941

    Article  CAS  Google Scholar 

  • Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347

    Article  CAS  Google Scholar 

  • Russell A, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512

    Article  CAS  Google Scholar 

  • Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148

    Article  CAS  Google Scholar 

  • Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 113:E5044–E5051

    Article  CAS  Google Scholar 

  • Schlieker C, Zentgraf H, Dersch P, Mogk A (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386:115–1127

    Article  Google Scholar 

  • Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068

    Article  Google Scholar 

  • Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153:2689–2699

    Article  CAS  Google Scholar 

  • Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353

    Article  CAS  Google Scholar 

  • Si M, Zhao C, Burkinshaw B, Zhang B, Wei D, Wang Y, Dong TG, Shen X (2017) Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 114:E2233–e2242

    Article  CAS  Google Scholar 

  • Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, Gonen T, Mougous JD (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51:584–593

    Article  CAS  Google Scholar 

  • Slater SC et al (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Montagu MV, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168

    Article  CAS  Google Scholar 

  • Thomas J, Watve SS, Ratcliff WC, Hammer BK (2017) Horizontal gene transfer of functional Type VI killing genes by natural transformation. mBio 8:e00654–17

    Article  Google Scholar 

  • Unterweger D, Kostiuk, Otjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34:2198–2210

    Article  CAS  Google Scholar 

  • Wang T et al (2015) Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11:e1005020

    Article  Google Scholar 

  • Wong M, Liang X, Smart M, Tang L, Moore R, Ingalls B, Dong TG (2016) Microbial her protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol 82:6881–6888

    Article  CAS  Google Scholar 

  • Wu CF, Lin JS, Shaw GC, Lai EM (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938

    Article  Google Scholar 

  • Wu HY, Chung PC, Shih HW, Wen S, Lai EM (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850

    Article  CAS  Google Scholar 

  • Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 190:494–507

    Article  CAS  Google Scholar 

  • Zheng J, Ho B, Mekalanos JJ (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6:e23876

    Article  CAS  Google Scholar 

  • Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E (2014) Architecture and assembly of the Type VI secretion system. Biochimi Biophys Acta 1843:1664–1673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Chang lab for their stimulating discussions and insightful comments on the manuscript. We thank Dr. Devanand D Bondage for giving us permission to use his illustration. Work in the Chang lab is supported in part by the National Institute of Food and Agriculture, US Department of Agriculture award 2014-51181-22384. Funding for the Lai lab is provided by the Ministry of Science and Technology of Taiwan (MOST 104-2311-B-001-025-MY3). DAS is a 2018 Barry Goldwater Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff H. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, CF., Smith, D.A., Lai, EM., Chang, J.H. (2018). The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_99

Download citation

Publish with us

Policies and ethics