Skip to main content

Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbudak MA, More AB, Nandy S, Srivastava V (2010) Dosage-dependent gene expression from direct repeat locus in rice developed by site-specific gene integration. Mol Biotechnol 45:15–23

    CAS  PubMed  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant sites placed in the plant genome. Plant J 7:649–659

    CAS  PubMed  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand A, Bass SH, Bertain SM, Cho HJ, Kinney AJ, Klein TM, Lassner M, McBride KE, Moy Y, Rosen BAM, Wei JZ (2017a) Ochrobactrum-mediated transformation of plants. In: WO/2017/040343

    Google Scholar 

  • Anand A, Bass SH, Cho HJ, Klein TM, Lassner M, McBride KE (2017b) Methods and compositions of improved plant transformation. In: WO/2017/078836 A1

    Google Scholar 

  • Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol. https://doi.org/10.1007/s11103-018-0732-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of baby boom triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    CAS  PubMed  Google Scholar 

  • Cardi T, Neal Stewart C (2016) Progress of targeted genome modification approaches in higher plants. Plant Cell Rep 35:1401–1416

    CAS  PubMed  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    CAS  PubMed  Google Scholar 

  • Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218

    CAS  PubMed  Google Scholar 

  • Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Zastrow-Hayes G, Miller M, Liu D, Lawit SJ, Zhao Z-Y, Albertsen MC, Jones TJ (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J. https://doi.org/10.1111/pbi.12879

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Devel Biol Plant 40:31–45

    Google Scholar 

  • Chilcoat D, Liu Z-B, Sander J (2017) Chapter two—Use of CRISPR/Cas9 for crop improvement in maize and soybean. In: Weeks DP, Yang B (eds) Progress in Molecular Biology and Translational Science. Academic Press, Cambridge, pp 27–46

    Google Scholar 

  • Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register J III, Jones T, Zhao Z-Y (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    CAS  PubMed  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    PubMed  Google Scholar 

  • De Buck S, Podevin N, Nolf J, Jacobs A, Depicker A (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145

    PubMed  Google Scholar 

  • Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48

    CAS  Google Scholar 

  • Depicker A, Sanders M, Meyer P (2005) Transgene silencing. In: Meyer P (ed) Plant epigenetics. Blackwell Publishing Ltd., Oxford, pp 1–31

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci 94:2117–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebinuma H, Sugita K, Endo S, Matsunaga E, Yamada K (2005) Elimination of marker genes from transgenic plants using MAT vector systems. In: Peña L (ed) Methods in molecular biology. Human Press, Totowa, NJ, pp 237–253

    Google Scholar 

  • Ebinuma H, Nakahama K, Nanto K (2015) Enrichments of gene replacement events by Agrobacterium-mediated recombinase-mediated cassette exchange. Mol Breeding 35:82

    Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (2015) Guidance for renewal applications of genetically modified food and feed authorised under Regulation (EC) No. 1829/2003. EFSA J 13:4129

    Google Scholar 

  • Eszterhas SK, Bouhassira EE, Martin DIK, Fiering S (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22:469–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta—Gene Regul Mech 1849:385–402

    Google Scholar 

  • Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 System. J Genet Genomics 43:37–43

    PubMed  Google Scholar 

  • Florentin A, Damri M, Grafi G (2013) Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Dev Dyn 242:1121–1133

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB, Kim S-I (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta—Gene Struct Expr 1769:410–421

    CAS  Google Scholar 

  • Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Y-m Woo, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci 99:11975–11980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grafi G, Barak S (2015) Stress induces cell dedifferentiation in plants. Biochim Biophys Acta—Gene Regul Mech 1849:378–384

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotech 14:745–750

    CAS  Google Scholar 

  • Ji Q, Xu X, Wang K (2013) Genetic transformation of major cereal crops. In Vitro Cell Dev Biol Plant 57:495–508

    CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    CAS  PubMed  Google Scholar 

  • Komari T, Ishida Y, Hiei Y (2004) Plant transformation technology: Agrobacterium-mediated transformation. In: Handbook of plant biotechnology. Wiley, Hoboken

    Google Scholar 

  • Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary Vectors and super-binary vectors. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, NJ, pp 15–42

    Google Scholar 

  • Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151:1087–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lotan T, M-a Ohto, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    CAS  PubMed  Google Scholar 

  • Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco SC, RegisterIII JC, Zhao Z-Y, Xu D, Jones TJ, Gordon-Kamm WJ (2016) Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28:1998–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe K, Rota ML, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” maize transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-018-9901-6

  • Lyznik LA, Gordon-Kamm WJ, Tao Y (2003) Site-specific recombination for genetic engineering in plants. Plant Cell Rep 21:925–932

    CAS  PubMed  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    CAS  PubMed  Google Scholar 

  • Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36:1477–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motte H, Vercauteren A, Depuydt S, Landschoot S, Geelen D, Werbrouck S, Goormachtig S, Vuylsteke M, Vereecke D (2014) Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc Natl Acad Sci 111:8305–8310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mumm RH, Walters DS (2001) Quality control in the development of transgenic crop seed Products. Crop Sci 41:1381–1389

    Google Scholar 

  • Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol J 9:713–721

    CAS  PubMed  Google Scholar 

  • Nanto K, Ebinuma H (2008) Marker-free site-specific integration plants. Trans Res 17:337–344

    CAS  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214

    CAS  PubMed  Google Scholar 

  • Nanto K, Sato K, Katayama Y, Ebinuma H (2009) Expression of a transgene exchanged by the recombinase-mediated cassette exchange (RMCE) method in plants. Plant Cell Rep 28:777–785

    CAS  PubMed  Google Scholar 

  • Ow DW (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18:115–120

    CAS  PubMed  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113

    PubMed  PubMed Central  Google Scholar 

  • Pröls F, Meyer P (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2:465–475

    PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    CAS  PubMed  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:000379

    Google Scholar 

  • Rathore DS, Doohan F, Mullins E (2016) Capability of the plant-associated bacterium, Ensifer adhaerens strain OV14, to genetically transform its original host Brassica napus. Plant Cell Tissue Organ Cult 127:85–94

    CAS  Google Scholar 

  • Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breeding 35:40

    Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) Sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    CAS  PubMed  Google Scholar 

  • Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P (2015) A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24:1–17

    CAS  PubMed  Google Scholar 

  • Singh A, Khurana P (2017) Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep 7:12368

    PubMed  PubMed Central  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotech 32:47–53

    CAS  PubMed  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JBM, Boutilier K (2006) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    PubMed  Google Scholar 

  • Srivastava V, Ow DW (2002) Biolistic mediated site-specific integration in rice. Mol Breed 8:345–349

    Google Scholar 

  • Srivastava V, Thomson J (2016) Gene stacking by recombinases. Plant Biotechnol J 14:471–482

    CAS  PubMed  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    CAS  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci 98:11806–11811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss SH, Sax JK (2016) Ending event-based regulation of GMO crops. Nat Biotechnol 34:474–477

    CAS  PubMed  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-b response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39

    CAS  PubMed  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    CAS  PubMed  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    CAS  Google Scholar 

  • Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J Mol Biol 402:52–69

    CAS  PubMed  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    CAS  PubMed  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23:567–569

    CAS  PubMed  Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    PubMed  Google Scholar 

  • Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucl Acids Res 26:2729–2734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    CAS  PubMed  Google Scholar 

  • Wei F-J, Kuang L-Y, Oung H-M, Cheng S-Y, Wu H-P, Huang L-T, Tseng Y-T, Chiou W-Y, Hsieh-Feng V, Chung C-H, Yu S-M, Lee L-Y, Gelvin SB, Hsing Y-IC (2016) Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant J 85:648–659

    CAS  PubMed  Google Scholar 

  • Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–578

    CAS  PubMed  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol—Plant 50:9–18

    PubMed  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Critical Rev Plant Sci 29:36–57

    CAS  Google Scholar 

  • Zastrow-Hayes GM, Lin H, Sigmund AL, Hoffman JL, Alarcon CM, Hayes KR, Richmond TA, Jeddeloh JA, May GD, Beatty MK (2015) Southern-by-sequencing: a robust screening approach for molecular characterization of genetically modified crops. Plant Genome 8

    CAS  Google Scholar 

  • Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628

    CAS  PubMed  Google Scholar 

  • Zhi L, TeRonde S, Meyer S, Arling ML, Register JC III, Zhao Z-Y, Jones TJ, Anand A (2015) Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep 34:745–754

    CAS  PubMed  Google Scholar 

  • Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics 43:25–36

    PubMed  Google Scholar 

  • Zuniga-Soto E, Mullins E, Dedicova B (2015) Ensifer-mediated transformation: an efficient non-Agrobacterium protocol for the genetic modification of rice. SpringerPlus 4:600

    PubMed  PubMed Central  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described here was supported by the Applied Science and Technology organization including Vector Construction, Crop Genome Engineering, Controlled Environments, Genomics and Nucleic Acid Analysis at Corteva Agriscience, Agriculture Division of DowDuPont. Individual projects were led by Keith Lowe, William Gordon-Kamm, Emily Wu, Ping Che, Jeffery Sander, and Scott Betts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, A., Jones, T.J. (2018). Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_97

Download citation

Publish with us

Policies and ethics