Skip to main content

The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akeda Y, Galan JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915. https://doi.org/10.1038/nature03992

    Article  CAS  PubMed  Google Scholar 

  • Albright LM, Yanofsky MF, Leroux B, Ma DQ, Nester EW (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169:1046–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aly KA, Baron C (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–3775

    CAS  PubMed  Google Scholar 

  • Aly KA, Krall L, Lottspeich F, Baron C (2008) The type IV secretion component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190:1595–1604

    CAS  PubMed  Google Scholar 

  • Anderson LB, Hertzel AV, Das A (1996) Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci USA 93:8889–8894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26:2540–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211

    CAS  PubMed  Google Scholar 

  • Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backert S, Fronzes R, Waksman G (2008) VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16:409–413

    CAS  PubMed  Google Scholar 

  • Banta LM et al (2011) An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol 193:2566–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21:1931–1941

    CAS  PubMed  Google Scholar 

  • Baron C, Thorstenson YR, Zambryski PC (1997) The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179:1211–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bash R, Matthysse A (2002) Attachment to roots and virulence of a chvB mutant of Agrobacterium tumefaciens are temperature sensitive. Mol Plant Microbe Interact 15:160–163

    CAS  PubMed  Google Scholar 

  • Beaupre CE, Bohne J, Dale EM, Binns AN (1997) Interactions between VirB9 and VirB10 proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179:78–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykas PJJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    CAS  PubMed  Google Scholar 

  • Beijersbergen A, Smith SJ, Hooykaas PJ (1994) Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 32:212–218

    CAS  PubMed  Google Scholar 

  • Berger BR, Christie PJ (1994) Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatty M, Laverde Gomez JA, Christie PJ (2013) The expanding bacterial type IV secretion lexicon. Res Microbiol 164:620–639. https://doi.org/10.1016/j.resmic.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328:172–175

    CAS  Google Scholar 

  • Bundock P, den DRA, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens. EMBO J 14:3206–3214

    Google Scholar 

  • Cabezon E, Sastre JI, de la Cruz F (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254:400–406

    CAS  PubMed  Google Scholar 

  • Cameron TA, Roper M, Zambryski PC (2012) Quantitative image analysis and modeling indicate the Agrobacterium tumefaciens type IV secretion system is organized in a periodic pattern of foci. PLoS ONE 7:e42219. https://doi.org/10.1371/journal.pone.0042219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Atmakuri K, Sarkar MK, Christie PJ (2013) DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 195:2691–2704. https://doi.org/10.1128/JB.00114-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Christie PJ (2004a) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101:17228–17233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Christie PJ (2004b) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173

    CAS  PubMed  Google Scholar 

  • Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    CAS  PubMed  Google Scholar 

  • Das A, Xie YH (1998) Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 27:405–414

    CAS  PubMed  Google Scholar 

  • de la Cruz F, Frost LS, Meyer RJ, Zechner EL (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Micro Rev 34:18–40. https://doi.org/10.1111/j.1574-6976.2009.00195.x

    Article  CAS  Google Scholar 

  • de Paz HD, Larrea D, Zunzunegui S, Dehio C, de la Cruz F, Llosa M (2010) Functional dissection of the conjugative coupling protein TrwB. J Bacteriol 192:2655–2669

    PubMed  PubMed Central  Google Scholar 

  • de Paz HD, Sangari FJ, Bolland S, Garcia-Lobo JM, Dehio C, de la Cruz F, Llosa M (2005) Functional interactions between type IV secretion systems involved in DNA transfer and virulence. Microbiology 151:3505–3516

    PubMed  Google Scholar 

  • Durrenberger MB, Villiger W, Bachi TH (1991) Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 107:146–156

    CAS  PubMed  Google Scholar 

  • Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E (1999) Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274:22548–22555

    CAS  PubMed  Google Scholar 

  • Fernandez D, Spudich GM, Zhou XR, Christie PJ (1996) The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178:3168–3176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin SA, Gelvin SB (1993) Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens Vir D1, D2 endonuclease. Mol Micribiol 8:915–926

    CAS  Google Scholar 

  • Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009) Structure of a type IV secretion system core complex. Science 323:266–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fullner KJ (1998) Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180:430–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109

    CAS  PubMed  Google Scholar 

  • Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641

    CAS  PubMed  Google Scholar 

  • Gordon JE et al (2017) Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 105:273–293. https://doi.org/10.1111/mmi.13700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107:455–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Hou Q, Hew CL, Pan SQ (2007) Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact 20:1201–1212

    CAS  PubMed  Google Scholar 

  • Guzman-Herrador DL, Steiner S, Alperi A, Gonzalez-Preito C, Roy CR, Llosa M (2017) DNA delivery and genomic integration into mammalian target cells through type IV A and B secretion systems of human pathogens. Front Microbiol 8:1503. https://doi.org/10.3389/fmicb.2017.01503

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton CM et al (2000) TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182:1541–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C (2014) Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5:176. https://doi.org/10.3389/fpls.2014.00176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and Type IV secretion. J Bacteriol 188:8222–8230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppner C, Liu Z, Domke N, Binns AN, Baron C (2004) VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186:1415–1422

    PubMed  PubMed Central  Google Scholar 

  • Hormaeche I, Iloro I, Arrondo JL, Goni FM, de la Cruz F, Alkorta I (2004) Role of the transmembrane domain in the stability of TrwB, an integral protein involved in bacterial conjugation. J Biol Chem 279:10955–10961

    CAS  PubMed  Google Scholar 

  • Hormaeche I, Segura RL, Vecino AJ, Goni FM, de la Cruz F, Alkorta I (2006) The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB. FEBS Lett 580:3075–3308

    CAS  PubMed  Google Scholar 

  • Hwang HH, Gelvin S (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16:3148–3167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang FC, Fu BJ, Liu YT, Chang YR, Chi SF, Chien PR, Huang SC, Hwang HH (2018) Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 participate in Agrobacterium-mediated plant transformation. Int J Mol Sci 19(2). pii: E638. https://doi.org/10.3390/ijms19020638

    PubMed Central  Google Scholar 

  • Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowski SJ, Kerr JE, Garza I, Krishnamoorthy V, Bayliss R, Waksman G, Christie PJ (2009) Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71:779–794

    CAS  PubMed  Google Scholar 

  • Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341:961–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowski SJ, Krishnamoorthy V, Christie PJ (2003) Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185:2867–2878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Judd PK, Kumar RB, Das A (2005a) Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci U S A 102:11498–11503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Judd PK, Kumar RB, Das A (2005b) The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124

    CAS  PubMed  Google Scholar 

  • Kado CI (2000) The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr Opin Microbiol 3:643–648

    CAS  PubMed  Google Scholar 

  • Kato J, Lefebre M, Galan JE (2015) Structural features reminiscent of ATP-driven protein translocases are essential for the function of a Type III secretion-associated ATPase. J Bacteriol 197:3007–3014. https://doi.org/10.1128/JB.00434-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192:4923–4934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuldau GA, De VG, Owen J, McCaffrey G, Zambryski P (1990) The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genetics 221:256–266

    CAS  Google Scholar 

  • Kumar RB, Das A (2002) Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein. VirD4. Mol Microbiol 43:1523–1532

    CAS  PubMed  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak MJ et al (2017) Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol 2:17114. https://doi.org/10.1038/nmicrobiol.2017.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2011) Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant. PLoS ONE 6:e25578. https://doi.org/10.1371/journal.pone.0025578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang S et al (2011) An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 82:1071–1085. https://doi.org/10.1111/j.1365-2958.2011.07872.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrea D, de Paz HD, Arechaga I, de la Cruz F, Llosa M (2013) Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. Plasmid 70:146–153. https://doi.org/10.1016/j.plasmid.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  • Li G, Brown PJ, Tang JX, Xu J, Quardokus EM, Fuqua C, Brun YV (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83:41–51. https://doi.org/10.1111/j.1365-2958.2011.07909.x

    Article  CAS  PubMed  Google Scholar 

  • Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Low HH et al (2014) Structure of a type IV secretion system. Nature 508:550–553. https://doi.org/10.1038/nature13081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, den Dulk-Ras A, Hooykaas PJJ, Glover JNM. Glover (2009) Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci USA 106:9643–0648

    CAS  Google Scholar 

  • Matthysse AG (2014) Attachment of Agrobacterium to plant surfaces. Front Plant Sci 5:252. https://doi.org/10.3389/fpls.2014.00252

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interact 18:1002–1010. https://doi.org/10.1094/MPMI-18-1002

    Article  CAS  PubMed  Google Scholar 

  • Padavannil A et al (2014) Dimerization of VirD2 binding protein is essential for Agrobacterium induced tumor formation in plants. PLoS Pathog 10:e1003948. https://doi.org/10.1371/journal.ppat.1003948

    Article  PubMed  PubMed Central  Google Scholar 

  • Pena A, Arechaga I (2013) Molecular motors in bacterial secretion. J Mol Microbiol Biotechnol 23:357–369. https://doi.org/10.1159/000351360

    Article  CAS  PubMed  Google Scholar 

  • Pena A et al (2012) The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 287:39925–39932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashkova S, Spudich GM, Christie PJ (1997) Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179:583–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redzej A et al (2017) Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 36:3080–3095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezon E (2013) Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 195:4195–4201. https://doi.org/10.1128/JB.00437-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagulenko E, Sagulenko V, Chen J, Christie PJ (2001) Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183:5813–5825. https://doi.org/10.1128/JB.183.20.5813-5825.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Ann Rev Phytopathol 32:181–200

    CAS  Google Scholar 

  • Samuels AL, Lanka E, Davies JE (2000) Conjugative junctions in RP4-mediated mating of Escherichia coli. J Bacteriol 182:2709–2715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardesai N, Lee LY, Chen Y, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB (2013) Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 6:ra100 https://doi.org/10.1126/scisignal.2004518

    PubMed  Google Scholar 

  • Savvides SN (2007) Secretion superfamily ATPases swing big. Structure 15:255–257

    CAS  PubMed  Google Scholar 

  • Savvides SN et al (2003) VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22:1969–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Eisenlohr H, Domke N, Baron C (1999) TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular-weight structures in Escherichia coli. J Bacteriol 181:5563–5571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrammeijer B, Dulk-Ras AdA, Vergunst AC, Jurado Jacome E, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucl Acids Res 31:860–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasu K, Kado CI (1993) The virB operon of the Agrobacterium tumefaciens virulence regulon has sequence similarities to B, C and D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucleic Acids Res 21:353–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasu K, Morel P, Kado CI (1990) Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Mol Microbiol 4:1153–1163

    CAS  PubMed  Google Scholar 

  • Simone M, McCullen CA, Stahl LE, Binns AN (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293

    CAS  PubMed  Google Scholar 

  • Spudich GM, Fernandez D, Zhou XR, Christie PJ (1996) Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A 93:7512–7517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stachel SE, Timmerman B, Zambryski P (1987) Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5’ virD gene products. EMBO J 6:857–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stachel SE, Zambryski PC (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47:155–157

    CAS  PubMed  Google Scholar 

  • Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW (1989) The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171:6845–6849

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Kregten M, Lindhout BI, Hooykaas PJ, van der Zaal BJ (2009) Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant-Microbe Inter: MPMI 22:1356–1365

    Google Scholar 

  • Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170:1523–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuink TJ, Hooykaas PJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    CAS  PubMed  Google Scholar 

  • Vergunst AC, van Lier MC, den Dulk-Ras A, Grosse Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergunst AC, Van Lier MC, Den Dulk-Ras A, Hooykaas PJ (2003) Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133:978–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Haitjema CH, Fuqua C (2014) The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment. J Bacteriol 196:2979–2988. https://doi.org/10.1128/JB.01670-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JE, Akiyoshi DE, Reiger D, Datta A, Gordon MP, Nester EW (1988) Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263:5804–5814

    CAS  PubMed  Google Scholar 

  • Ward JE Jr, Dale EM, Binns AN (1991) Activity of the Agrobacterium T-DNA transfer machinery is affected by virB gene products. Proc Natl Acad Sci U S A 88:9350–9354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker N et al (2016) Chimeric coupling proteins mediate transfer of heterologous type IV effectors through the Escherichia coli pKM101-encoded conjugation machine. J Bacteriol 198:2701–2718. https://doi.org/10.1128/JB.00378-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker N, Chen Y, Jakubowski SJ, Sarkar MK, Li F, Christie PJ (2015) The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J Bacteriol 197:2335–2349. https://doi.org/10.1128/JB.00189-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winans SC, Burns DL, Christie PJ (1996) Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol 4:64–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kim J, Koestler BJ, Choi JH, Waters CM, Fuqua C (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948. https://doi.org/10.1111/mmi.12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Li X, Tu H, Pan SQ (2017) Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network. Proc Natl Acad Sci USA 114:2982–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477

    CAS  PubMed  Google Scholar 

  • Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472

    CAS  PubMed  Google Scholar 

  • Young C, Nester EW (1988) Association of the VirD2 protein with the 5′ end of T strands in Agrobacterium tumefaciens. J Bacteriol 170:3367–3374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Q et al (2005) Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280:26349–26359

    CAS  PubMed  Google Scholar 

  • Zhao Z, Sagulenko E, Ding Z, Christie PJ (2001) Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol 183:3855–3865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XR, Christie PJ (1997) Suppression of mutant phenotypes of the Agrobacterium tumefaciens VirB11 ATPase by overproduction of VirB proteins. J Bacteriol 179:5835–5842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P (2007) VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189:6551–6563

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Christie laboratory is supported by NIH grant R01GM48476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y.G., Christie, P.J. (2018). The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_94

Download citation

Publish with us

Policies and ethics