Skip to main content

Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuña R, Padilla BE, Flórez-Ramos CP et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109:4197–4202

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki S, Kawaoka A, Sekine M et al (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. Mol Gen Genet 243:706–710

    Article  CAS  PubMed  Google Scholar 

  • Arber W (2014) Horizontal gene transfer among bacteria and its role in biological evolution. Life 4:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Selbach M (2008) Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Banta L, Montenegro M (2008) Agrobacterium and plant biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 72–147

    Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102:14332–14337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boothby TC, Tenlen JR, Smith FW et al (2015) Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A 112:15976–15981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Kiselev KV, Yakovlev KV et al (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundock P, Mroczek K, Winkler AA et al (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet 261:115–121

    Article  CAS  PubMed  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O et al (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3: research0025

    Article  Google Scholar 

  • Crisp A, Boschetti C, Perry M et al (2015) Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 16:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Danchin EG, Guzeeva EA, Mantelin S et al (2016) Horizontal gene transfer from bacteria has enabled the plant-parasitic nematode Globodera pallida to feed on host-derived sucrose. Mol Biol Evol 33:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi [published erratum appears in Nat. Biotechnol. 16, 1074 (1998)]. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Degnan SM (2014) Think laterally: Horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts. Front Microbiol 5:638

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Eichinger L, Pachebat JA, Glöckner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer JJ, Christensen MD, Rege K (2013) Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Control Release 172:246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eme L, Gentekaki E, Curtis B et al (2017) Lateral gene transfer in the adaptation of the anaerobic parasite blastocystis to the gut. Curr Biol 27:807–820

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Huangfu L, Chen R et al (2017) Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer. Sci Rep 7:9324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández-González E, de Paz HD, Alperi A et al (2011) Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol 193:6257–6265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329:1–8

    Article  CAS  PubMed  Google Scholar 

  • Forbes DJ (1992) Structure and function of the nuclear pore complex. Annu Rev Cell Biol 8:495–527

    Article  CAS  PubMed  Google Scholar 

  • Fournier GP, Huang J, Gogarten JP (2009) Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc Lond B 364:2229–2239

    Article  CAS  Google Scholar 

  • Frandsen RJ (2011) A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 87:247–262

    Article  CAS  PubMed  Google Scholar 

  • Furner IJ, Huffman GA, Amasino RM et al (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    Article  CAS  Google Scholar 

  • Gardiner DM, Kazan K, Manners JM (2013) Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Sci 210:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Goessweiner-Mohr N, Arends K, Keller W et al (2013) Conjugative type IV secretion systems in gram-positive bacteria. Plasmid 70:289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  CAS  PubMed  Google Scholar 

  • Gouka RJ, Gerk C, Hooykaas PJJ et al (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  CAS  PubMed  Google Scholar 

  • Hayman GT, Bolen PL (1993) Movement of shuttle plasmids from Escherichia coli into yeasts other than Saccharomyces cerevisiae using trans-kingdom conjugation. Plasmid 30:251–257

    Article  CAS  PubMed  Google Scholar 

  • Heinemann JA, Sprague JF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJJ, Klapwijk PM, Nuti MP et al (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98:477–484

    Article  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG et al (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  CAS  PubMed  Google Scholar 

  • Huang J (2013) Horizontal gene transfer in eukaryotes: the weak-link model. BioEssays 35:868–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  CAS  PubMed  Google Scholar 

  • Hubber A, Vergunst AC, Sullivan JT et al (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574

    Article  CAS  PubMed  Google Scholar 

  • Husnik F, McCutcheon JP (2018) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16:67–79

    Article  CAS  PubMed  Google Scholar 

  • Inomata K, Nishikawa M, Yoshida K (1994) The yeast Saccharomyces kluyveri as a recipient eukaryote in transkingdom conjugation: Behavior of transmitted plasmids in transconjugants. J Bacteriol 176:4770–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo VD, Sukno SA, Thon MR (2015) Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genom 16:2

    Article  CAS  Google Scholar 

  • Johnsborg O, Eldholm V, Havarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778

    Article  CAS  PubMed  Google Scholar 

  • Karas BJ, Diner RE, Lefebvre SC et al (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:6925

    Article  CAS  PubMed  Google Scholar 

  • Klasson L, Kambris Z, Cook PE et al (2009) Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genom 10:33

    Article  CAS  Google Scholar 

  • Klosterman SJ, Subbarao KV, Kang S et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7:e1002137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2016) Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transition. F1000 Res 5 1805

    Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 55:709–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsovoulos G, Kumar S, Laetsch DR et al (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 113:5053–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krenek P, Samajova O, Luptovciak I et al (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33:1024–1042

    Article  CAS  PubMed  Google Scholar 

  • Ku C, Nelson-Sathi S, Roettger M et al (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432

    Article  CAS  PubMed  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T, Quispe D, Zhai H et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci U S A 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481

    Article  CAS  PubMed  Google Scholar 

  • Lacroix B, Citovsky V (2016) A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli. PLoS Pathog 12:e1005502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A et al (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Consortium IHGS, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Le PT, Pontarotti P, Raoult D (2014) Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol 22:147–156

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Efetova M, Engelmann JC et al (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llosa M, Schröder G, Dehio C (2012) New perspectives into bacterial DNA transfer to human cells. Trends Microbiol 20:355–359

    Article  CAS  PubMed  Google Scholar 

  • Machado-Ferreira E, Balsemão-Pires E, Dietrich G et al (2015) Transgene expression in tick cells using Agrobacterium tumefaciens. Exp Appl Acarol 67:269–287

    Article  CAS  PubMed  Google Scholar 

  • Maindola P, Raina R, Goyal P et al (2014) Multiple enzymatic activities of ParB/Srx superfamily mediate sexual conflict among conjugative plasmids. Nat Commun 5:5322

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA et al (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant-Microbe Interact 25:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci 5:326

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitrikeski PT (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103:1181–1207

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi K, Yamamoto S, Ohmine Y et al (2016) A fast and practical yeast transformation method mediated by Escherichia coli based on a trans-kingdom conjugal transfer system: just mix two cultures and wait one hour. PLoS ONE 11:e0148989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowack EC, Price DC, Bhattacharya D et al (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113:12214–12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piers KL, Heath JD, Liang X et al (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front Plant Sci 8:2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley DR, Sieber KB, Robinson KM et al (2013) Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 9:e1003107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönknecht G, Chen WH, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Schönknecht G, Weber AP, Lercher MJ (2014) Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36:9–20

    Article  PubMed  CAS  Google Scholar 

  • Schröder G, Schuelein R, Quebatte M et al (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci U S A 108:14643–14648

    Article  PubMed  PubMed Central  Google Scholar 

  • Siamer S, Dehio C (2015) New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol 23:80–85

    Article  CAS  PubMed  Google Scholar 

  • Sieber KB, Bromley RE, Dunning Hotopp JC (2017) Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res 358:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber KB, Gajer P, Dunning Hotopp JC (2016) Modeling the integration of bacterial rRNA fragments into the human cancer genome. BMC Bioinformatics 17:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soltani J, van Heusden GP, Hooykaas PJJ (2008) Agrobacterium-mediated ransformation of non-plant organisms. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 649–675

    Chapter  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ et al (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    Article  CAS  PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S et al (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    Article  CAS  PubMed  Google Scholar 

  • van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-theta-mediated DNA repair. Nat Plants 2:16164

    Article  PubMed  CAS  Google Scholar 

  • Varga MG, Shaffer CL, Sierra JC et al (2016) Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 35:6262–6269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, Stan GV, Polizzi KM (2017) Intracellular delivery of biologic therapeutics by bacterial secretion systems. Expert Rev Mol Med 19:e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Lacroix B, Guo J et al (2017) Transcriptional activation of virulence genes of Rhizobium etli. J Bacteriol 199:e00841–00816

    Google Scholar 

  • Waters VL (2001) Conjugation between bacterial and mammalian cells. Nat Genet 29:375–376

    Article  CAS  PubMed  Google Scholar 

  • Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–578

    Article  CAS  PubMed  Google Scholar 

  • Wendt T, Doohan F, Winckelmann D et al (2011) Gene transfer into Solanum tuberosum via Rhizobium spp. Transgenic Res 20:377–386

    Article  CAS  PubMed  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA et al (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Article  CAS  Google Scholar 

  • Yang Z, Zhou Y, Huang J et al (2015) Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol 206:807–816

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Huang J (2014) Origin of plant auxin biosynthesis. Trends Plant Sci 19:764–770

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Sun H et al (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R, Ding X, Kitagawa Y et al (2002) Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc Natl Acad Sci U S A 99:14893–14896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga-Soto E, Mullins E, Dedicova B (2015) Ensifer-mediated transformation: an efficient non-Agrobacterium protocol for the genetic modification of rice. SpringerPlus 4:600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work in the VC laboratory is supported by grants from USDA/NIFA, NIH, NSF, and BARD to VC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lacroix, B., Citovsky, V. (2018). Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_82

Download citation

Publish with us

Policies and ethics