Skip to main content

Agrobacterium-Mediated Transformation in the Evolution of Plants

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

In most cases, the genetic engineering of plants uses Agrobacterium-mediated transformation to introduce novel genes. In nature, insertion of T-DNA into the plant genome and its subsequent transfer via sexual reproduction have been shown for several species in the genera Nicotiana, Ipomoea , and Linaria . A sequence homologous to T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of wild-type Nicotiana glauca (section Noctiflorae) more than 30 years ago and was named “cellular T-DNA” (cT-DNA). It comprises an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, Ngorf13, Ngorf14) and an opine synthesis gene (Ngmis). Multiple cT-DNAs have also been found in species of the sections Tomentosae and Nicotiana of the genus Nicotiana. These ancient cT-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. In 2012–2013, cT-DNA was detected and characterized in Linaria vulgaris and L. genistifolia ssp. dalmatica. Their cT-DNA is present in two copies and organized as an imperfect direct tandem repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. In 2015, cT-DNA was found in Ipomoea. Two types of T-DNA-like sequences were described within this genera, and their distribution varied among cultured hexaploid, tetraploid, and wild diploid forms. Thus, several independent T-DNA integration events occurred in the genomes of these three plant genera. We propose that the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this chapter, we focus on the structure and functions of cT-DNA in Linaria, Nicotiana, and Ipomoea and discuss their possible evolutionary role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109:4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Aoki S, Syono K (1999a) Function of Ngrol genes in the evolution of Nicotiana glauca: Conservation of the function of NgORF13and NgORF14 after ancient infection by an Agrobacterium rhizogenes-like ancestor. Plant Cell Physiol 40:222–230

    Article  CAS  Google Scholar 

  • Aoki S, Syono K (1999b) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci U S A 96:13229–13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A et al (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumors of N. glauca × N. langsdorffii. Mol Gen Genet 243:706–710

    CAS  PubMed  Google Scholar 

  • Blanco-Pastor JL, Vargas P, Pfeilm BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS ONE 7:e39089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogani P, Buiatti M, Tegli S, Pellegrini MG, Bettini P, Scala A (1985) Interspecific differences in differentiation and dedifferentiation patterns in the genus Nicotiana. Plant Syst Evol 151:19–29

    Article  Google Scholar 

  • Bush L, Hempflin WP, Burton H (1999) Biosynthesis of nicotine and related compounds. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Amsterdam, Netherlands: Elsevier Science, pp 13–44

    Chapter  Google Scholar 

  • Chen K, Otten L (2017) Natural Agrobacterium transformants, recent results and some theoretical considerations. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01600

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Dorlhac de Borne F, Julio E, Obszynski J, Pale P, Otten L (2016) Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring GMO Nicotiana tabacum. Plant J 87:258–269

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JJ, Yoong Lim K, Kovarik A, Chase MW, Knapp S, Leich AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    Article  CAS  PubMed  Google Scholar 

  • Dessai AP, Gosukonda RM, Blay E, Dumenyo CK, Medina-Bolivar F, Prakash CS (1995) Plant regeneration of sweetpotato (Ipomoea batatas L.) from leaf explants in vitro using a two-stage protocol. Sci Hortic 62:217–224

    Article  Google Scholar 

  • Dong F, WilsonKG, Makaroff CA (1998) Analysis of the four cox2 genes found in turnip (Brassica campestris Brassicaceae) mitochondria. Am J Bot 85:153–161

    Article  CAS  PubMed  Google Scholar 

  • Draper J, Scott R, Armitage P, Walden R (eds) (1988) Plant genetic engineering laboratory manual. Blackwell Scientific Ltd, London

    Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci U S A 98:13437–13442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores H, Pickard J, Hoy M (1988) Production of polyacetylenes and thiophenes in heterotrophic and photosynthetic root cultures of Asteraceae In: Lam J Breheler H Arnason T Hansen L (eds) Chemistry and biology of naturally occurring acetylenes and related compounds (NOARC) bioactive molecules, vol 7. Elsevier, Amsterdam, pp 233–254

    Google Scholar 

  • Fründt C, Meyer AD, Ichikawa T, Meins F (1998) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 259:559–568

    Article  PubMed  Google Scholar 

  • Fürner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 329:422–427

    Article  Google Scholar 

  • Gama MIC, Leite JRP, Cordeiro AR, Cantliffe DJ (1996) Transgenic sweet potato plants obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Tissue Organ Cult 46:237–244

    Article  CAS  Google Scholar 

  • Gao C, Reno X, Mason AS, Liu H, Xiao M, Li J, Fu D (2014) Horizontal gene transfer in plants. Funct Integr Genomics 14:23–29

    Article  CAS  PubMed  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Article  CAS  PubMed  Google Scholar 

  • Goodspeed TH (1954) The genus nicotiana. Chronica Botanica, Waltham

    Google Scholar 

  • Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Nat Biotechnol 5:800–804

    Article  CAS  Google Scholar 

  • Hong SB, Hwang I, Dessaux Y, Guyon P, Kim KS, Farrand SK (1997) A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionary related to a Ti plasmid gene required for catabolism by Agrobacterium strains. J Bacteriol 189:4831–4840

    Article  Google Scholar 

  • Huang J (2013) Horizontal gene transfer in eukaryotes: the weak-link model. BioEssays 35:868–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husnik F, McCutcheon JP (2017) Functional horizontal gene transfer from bacteria to eukaryotes. Nature Rev Microbiol. https://doi.org/10.1038/nrmicro.2017.137

    Article  Google Scholar 

  • Ichikawa T and Syōno K (1991) Tobacco genetic tumors. Plant Cell Physiol 32:1123–1128

    Google Scholar 

  • Ichikawa T, Ozeki Y, Syono K (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumors of N. glauca × N. langsdorfii. Mol Gen Genet 220:177–180

    Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Khafizova G, Dobrynin P, Polev D, Matveeva T (2018) Nicotiana glauca whole-genome investigation for cT-DNA study. BMC Res Notes 11:18. https://doi.org/10.1186/s13104-018-3127-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kehr AE, Smith HH (1954) Genetic tumors in Nicotiana hybrids. Brookhaven Symp Biol 6:55–78

    Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostoff D (1930) Tumors and other malformations on certain nicotiana hybrids. Zentral bl. f.Bakt. I.1. 81:244–260

    Google Scholar 

  • Kovacova V, Zluvova J, Janousek B, Talianova M, Vyskot B (2014) The evolution of the horizontally transferred agrobacterial mikimopinesynthase gene in the genera Nicotiana and Linaria. PLoS ONE 9:e113872

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar AHG, Ku AT, Agarwal P, Mahesh Sand Yeh KW (2013) Protuberance-mediated high frequency of adventitious shoot regeneration from sweet potato leaf explants [Ipomoea batatas (L) Lam]. Biotechnol 94:445–450

    Article  CAS  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci U S A 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limami MA, Sun LY, Douatm C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes: annual flowering in two biennials belgianendive and carrot. Plant Physiol 118:543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveeva TV (2013) Horizontal gene transfer from Agrobacterium spp. to the higher plants. Extended abstract of doctoral (biol) dissertation. St Petersburg Gos Univ, St Petersburg

    Google Scholar 

  • Matveeva TV, Kosachev PA (2013) Sequences homologous to Agrobacterium rhizogenes rolC in the genome of Linaria acutiloba. In: Zheng D (ed) International conference on frontiers of environment energy and bioscience (ICFEEB 2013) Lancaster, DES Tech Publ Inc, pp 541–546

    Google Scholar 

  • Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci 5:326

    Article  PubMed  PubMed Central  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant-Microbe Interact 25:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Bogomaz OD, Golovanova LA, Li YuS, Dimitrov D (2018) Homologs of the rolC gene of naturally transgenic toadflaxes Linaria vulgaris and Linaria creticola are expressed in vitro. Vavilov J Genet Breeding (in press)

    Google Scholar 

  • Matveeva TV, Pavlova OA, Ivanitskii KI, Lutova LA (2009) Horizontal gene transfer from Agrobacterium to Nicotiana genus plants: evolutionary prerequisites and consequences. Vestn St. Petersburg Gos Univ Ser 3(4):58–65

    Google Scholar 

  • Matveeva T, Sokornova S (2017) Biological traits of naturally transgenic plants and their evolutional roles. Russ J Plant Physiol (2017) 64(5):635–64

    Article  CAS  Google Scholar 

  • Matveeva T, Sokornova S (2016) Agrobacterium rhizogenes mediated transformation of plants for improvement of yields of secondary metabolites. In: Pavlov A, Bley T (ed) Reference series in phytochemistry. Bioprocessing of plant in vitro systems. Springer, Berlin, pp 1–42

    Google Scholar 

  • Matveeva TV, Sokornova SV, Lutova LA (2015) Influence of Agrobacterium oncogenes on secondary metabolism of plants. Phytochem Rev 14:541–556

    Article  CAS  Google Scholar 

  • Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relationship to other plast genes. Mol Plant Microbe Interact 24:44–53

    Article  CAS  PubMed  Google Scholar 

  • Naf U (1958) Studies on tumor formation in Nicotiana hybrids I. The classification of the parents into two etiologically significant groups. Growth 22:167–180

    CAS  PubMed  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9:881–890

    Article  CAS  PubMed  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  CAS  PubMed  Google Scholar 

  • Otten L, Canaday J, Gerard JC, Fournier P, Crouzet P, Paulus F (1992) Evolution of agrobacteria and their Ti plasmids. Mol Plant Microbe Interact 5:279–287

    Google Scholar 

  • Palazon J, Cusido RM, Roig C, Pino MT (1998) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17:384–390

    Article  CAS  PubMed  Google Scholar 

  • Pavlova OA, Matveeva TV, Lutova LA (2013) Linaria dalmatica genome contains a homologue of rolC gene of Agrobacterium rhizogenes. Ecol Genet 11:10–15

    Article  Google Scholar 

  • Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front Plant Sci. https://doi.org/10.3389/fpls.2017.02015

  • Rhodes MJC, Robins RJ, Hamill JD, Parr AJ, Walton NJ (1987) Secondary product formation using Agrobacterium rhizogenes-transformed “hairy root” cultures. News Lett 53:2–15

    Google Scholar 

  • Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R et al (2006) Evolutionary origins of the eukaryotic shikimate pathway: gene fusions horizontal gene transfer and endosymbiotic replacements. Eukaryot Cell 5:1517–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sutton DA (1988) A revision of the tribe antirrhineae. Oxford University Press, London

    Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N (2008) Horizontal gene transfer. In Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 623–647

    Chapter  Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  CAS  PubMed  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3319

    Article  CAS  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was supported by a grant to Tatiana Matveeva from the Russian Science Foundation 16-16-10010. The author expresses her deep gratitude to Professor Leon Otten (Institut de biologie moléculaire des plantes, Strasbourg, France) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Matveeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matveeva, T.V. (2018). Agrobacterium-Mediated Transformation in the Evolution of Plants. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_80

Download citation

Publish with us

Policies and ethics