Skip to main content

Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics

  • Chapter
  • First Online:
Book cover Activity-Based Protein Profiling

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 420))

Abstract

Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family. In this review, we discuss the history, development, and current state of the field, highlighting the limitations and opportunities for PARP inhibitor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson CD, Karlberg T, Ekblad T, Lindgren AEG, Thorsell A-G, Spjut S et al (2012) Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J Med Chem 55(17):7706–7718

    Article  CAS  PubMed  Google Scholar 

  • Andreone TL, O’Connor M, Denenberg A, Hake PW, Zingarelli B (2003) Poly(ADP-Ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170(4):2113–2120. 15 Feb 2003. (American Association of Immunologists)

    Article  CAS  PubMed  Google Scholar 

  • Bai P (2015) Biology of poly(ADP-Ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958

    Article  CAS  PubMed  Google Scholar 

  • Bai P, Virág L (2012) Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 586(21):3771–3777. 26 Sep 2012. (Wiley-Blackwell)

    Article  CAS  PubMed  Google Scholar 

  • Barbarulo A, Iansante V, Chaidos A, Naresh K, Rahemtulla A, Franzoso G et al (2013) Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32(36):4231–4242

    Article  CAS  PubMed  Google Scholar 

  • Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. 18 Jun 2015. (Elsevier)

    Article  CAS  PubMed  Google Scholar 

  • Barrio JR, Secrist JA, Leonard NJ (1972) A fluorescent analog of nicotinamide adenine dinucleotide. Proc Natl Acad Sci 69(8):2039–2042

    Article  CAS  PubMed  Google Scholar 

  • Belousova EA, Ishchenko AA, Lavrik OI (2018) DNA is a new target of PARP3. Sci Rep. Nature Publishing Group 8(1):101. 8 Mar 2018

    Google Scholar 

  • Bitler BG, Gynecologic ZW (2017) PARP inhibitors: clinical utility and possibilities of overcoming resistance. Gynecologiconcology

    Google Scholar 

  • Bock FJ, Todorova TT, Chang P (2015) RNA Regulation by Poly(ADP-Ribose) Polymerases. Mol Cell 58(6):959–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917 Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  • Carter-O’Connell I, Jin H, Morgan RK, David LL, Cohen MS (2014) Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc 136(14):5201–5204. 9 Apr 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter-O’Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I et al Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Rep 14(3):621–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chambon P, Weill JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25(6):638–643

    Article  CAS  Google Scholar 

  • Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11(1):39–43

    Article  CAS  PubMed  Google Scholar 

  • Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14(3):236–243 Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77(1):383–414

    Article  CAS  PubMed  Google Scholar 

  • Donawho CK, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD et al (2007) ABT-888, an orally active poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clini Cancer Res 13(9):2728–2737 American Association for Cancer Research

    Article  CAS  Google Scholar 

  • Durrant LG, Boyle JM (1982) Potentiation of cell killing by inhibitors of poly (ADP-ribose) polymerase in four rodent cell lines exposed to N-methyl-N-nitrosourea or UV light. Chem Biol Interact 38(3):325–338

    Article  CAS  PubMed  Google Scholar 

  • Ekblad T, Lindgren AEG, Andersson CD, Caraballo R, Thorsell A-G, Karlberg T et al (2015) Towards small molecule inhibitors of mono-ADP-ribosyltransferases. Eur J Med Chem 95:546–551

    Article  CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921 Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  • Feng FY, de Bono JS, Rubin MA, Knudsen KE (2015) Chromatin to clinic: the molecular rationale for PARP1 inhibitor function. Mol Cell 58(6):925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraris DV (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53(12):4561–4584

    Article  CAS  PubMed  Google Scholar 

  • Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCAMutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Giansanti V, Donà F, Tillhon M, Scovassi AI (2010) PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 80(12):1869–1877

    Article  CAS  PubMed  Google Scholar 

  • Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I (2016) HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 62(3):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson BA, Conrad LB, Huang D, Kraus WL (2017) Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry 56(48):6305–6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H et al (2016) Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353(6294):45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golkowski M, Brigham JL, Perera BGK, Romano GS, Maly DJ, Ong S-E (2014) Rapid profiling of protein kinase inhibitors by quantitative proteomics. Med Chem Commun 5(3):363–369 The Royal Society of Chemistry

    Article  CAS  Google Scholar 

  • Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010a) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219

    Article  CAS  PubMed  Google Scholar 

  • Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. (Elsevier)

    Article  CAS  PubMed  Google Scholar 

  • Huang JY, Wang K, Vermehren Schmaedick A, Adelman JP, Cohen MS (2016) PARP6 is a regulator of hippocampal dendritic morphogenesis. Sci Rep 6(1):208. 4 Jan 2016. (Nature Publishing Group)

    Google Scholar 

  • Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. 16 Sept 2009. (Nature Publishing Group)

    Article  CAS  PubMed  Google Scholar 

  • Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. 1 Oct 2009. (Nature Publishing Group)

    Article  CAS  PubMed  Google Scholar 

  • Iansante V, Choy PM, Fung SW, Liu Y, Chai J-G, Dyson J et al (2015) PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 10(6):7882

    Article  CAS  Google Scholar 

  • Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H et al (2006) Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem 14(5):1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Jagtap PG, Southan GJ, Baloglu E, Ram S, Mabley JG, Marton A et al (2004) The discovery and synthesis of novel adenosine substituted 2,3-Dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). ChemInform 35(18):81 4 May 2004. (WILEY‐VCH Verlag)

    Google Scholar 

  • Jiang H, Kim JH, Frizzell KM, Kraus WL, Lin H (2010) Clickable NAD Analogues for Labeling Substrate Proteins of Poly(ADP-ribose) Polymerases. J Am Chem Soc 132(27):9363–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C et al (2009) Discovery of 2-{4-[(3 S)-Piperidin-3-yl]phenyl}-2 H-indazole-7-carboxamide (MK-4827): A Novel Oral Poly(ADP-ribose)polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 Mutant Tumors. J Med Chem 52(22):7170–7185

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Riyaz S, Srivastava AK, Rahim A (2014) Tankyrase inhibitors as therapeutic targets for cancer. Curr Top Med Chem 14(17):1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Karlberg T, Markova N, Johansson I, Hammarström M, Schütz P, Weigelt J et al (2010) Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J Med Chem 53(14):5352–5355

    Article  CAS  PubMed  Google Scholar 

  • Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T (1984) Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23(16):3771–3777

    Article  CAS  PubMed  Google Scholar 

  • Kirby IT, Kojic A, Arnold MR, Thorsell A-G, Karlberg T, Vermehren Schmaedick A et al (2018) A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity. Cell Chem Biol

    Google Scholar 

  • Knezevic CE, Wright G, Remsing Rix LL, Kim W, Kuenzi BM, Luo Y et al (2016) Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem Biol 23(12):1490–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus WL (2015) PARPs and ADP-Ribosylation: 50 Years … and Counting. Mol Cell 58(6):902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper J-H, van Gool L, Müller M, Bürkle A (1996) Detection of poly(ADP-ribose) polymerase and its reaction product poly(ADP-ribose) by immunocytochemistry. Histochem J 28(5):391–395. (Kluwer Academic Publishers)

    Article  PubMed  Google Scholar 

  • Langelier MF, Riccio AA, Pascal JM (2014) PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42(12):7762–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langelier M-F, Zandarashvili L, Aguiar PM, Black BE, Pascal JM (2018) NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nat Commun 9(1):844 Nature Publishing Group

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mabley JG, Jagtap P, Perretti M, Getting SJ, Salzman AL, Virág L et al (2001) Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflamm res 50(11):561–569. (Birkhäuser Verlag)

    Article  CAS  PubMed  Google Scholar 

  • Mariappan L, Jiang XY, Jackson J, Drew Y (2017) Emerging treatment options for ovarian cancer: focus on rucaparib. IJWH 9:913–924 Dove Press

    Article  CAS  Google Scholar 

  • Marsischky GT, Wilson BA, Collier RJ (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270(7):3247–3254

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra P, Hollenbeck A, Riley JP, Li F, Patel RJ, Akhtar N et al (2013) Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease. J Allergy Clin Immunol 131(2):521–531.e12. (Elsevier)

    Google Scholar 

  • Menear KA, Adcock C, Boulter R, Cockcroft X-L, Copsey L, Cranston A et al (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Hilz H (1986) Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resistant hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur J Biochem 155(1):157–165. (Blackwell Publishing Ltd)

    Article  CAS  PubMed  Google Scholar 

  • Morgan RK, Carter-OConnell I, Cohen MS (2015) Selective inhibition of PARP10 using a chemical genetics strategy. Bioorg Med Chem Lett

    Google Scholar 

  • Morgan RK, Cohen MS (2015) A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem Biol 10(8):1778–1784. 27 May 2015. (American Chemical Society)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munnur D, Ahel I (2017) Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. Wiley/Blackwell (10.1111); 2017 Nov 8;284(23):4002–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narendja FM, Sauermann G (1994) The use of biotinylated poly(ADP-ribose) for studies on poly(ADP-ribose)-protein interaction. Anal Biochem 220:415–419. (Vienna)

    Article  CAS  PubMed  Google Scholar 

  • Narwal M, Venkannagari H, Lehtiö L (2012) Structural basis of selective inhibition of human tankyrases. J Med Chem 55(3):1360–1367

    Article  CAS  PubMed  Google Scholar 

  • Nduka N, Skidmore CJ, Shall S (1980) The enhancement of cytotoxicity of N-Methyl-N-nitrosourea and of y-radiation by inhibitors of poly(ADP-ribose) Polymerase. Eur J Biochem 105(3):525–530. (Blackwell Publishing Ltd)

    Article  CAS  PubMed  Google Scholar 

  • Oei SL, Griesenbeck J, Buchlow G, Jorcke D, Mayer-Kuckuk P, Wons T et al (1999) NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase. FEBS Lett 397(1):17–21

    Article  Google Scholar 

  • Ohmoto A, Yachida S (2017) Current status of poly(ADP-ribose) polymerase inhibitors and future directions. OTT 10:5195–5208 Dove Press

    Article  Google Scholar 

  • Papeo G, Avanzi N, Bettoni S, Leone A, Paolucci M, Perego R et al (2014) Insights into PARP inhibitors’ selectivity using fluorescence polarization and surface plasmon resonance binding assays. J Biomol Screen 19(8):1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Pinto AF, Schüler H (2015) Comparative structural analysis of the putative mono-ADP-ribosyltransferases of the ARTD/PARP family. Curr Top Microbiol Immunol 384 (Chapter 417):153–166. (Springer International Publishing, Cham)

    Google Scholar 

  • Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185(3):775–777. 1 Mar 1980. (Portland Press Limited)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolli V, O’Farrell M, Ménissier-de Murcia J, de Murcia G (1997) Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching †. Biochemistry 36(40):12147–12154

    Article  CAS  PubMed  Google Scholar 

  • Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology (10.1111); 139(4):428–437. 2 Jul 2013. (Wiley/Blackwell)

    Google Scholar 

  • Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R et al (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18):5003–5015 American Association for Cancer Research

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surowy CS, Berger NA (1985) A, 3-aminobenzamide-resistant labeled protein in [32P]NAD+-labeled cells. Biochimica et Biophysica Acta (BBA)—Molecular. Cell Res 847(3):309–315

    CAS  Google Scholar 

  • Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S et al (2007) A simple, sensitive, and generalizable plate assay for screening PARP inhibitors. In: Methods in molecular biology. American Association for Cancer Research, pp 945–56

    Google Scholar 

  • Thorsell A-G, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L et al (2017a) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 60(4):1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Thorsell A-G, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L et al (2017b) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 60(4):1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M et al (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci 110(11):4267–4272. 12 Mar 2013

    Article  CAS  Google Scholar 

  • Upton K, Meyers M, Thorsell A-G, Karlberg T, Holechek J, Lease R et al (2017) Design and synthesis of potent inhibitors of the mono(ADP-ribosyl)transferase, PARP14. Bioorg Med Chem Lett 27(13):2907–2911

    Article  CAS  PubMed  Google Scholar 

  • Venkannagari H, Verheugd P, Koivunen J, Haikarainen T, Obaji E, Ashok Y et al (2016) Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage. Cell Chem Biol 23(10):1251–1260. (Elsevier)

    Article  CAS  PubMed  Google Scholar 

  • Voronkov A, Holsworth DD, Waaler J, Wilson SR, Ekblad B, Perdreau-Dahl H et al (2013) Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. J Med Chem 56(7):3012–3023

    Article  CAS  PubMed  Google Scholar 

  • Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell A-G et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30(3):283–288

    Article  CAS  PubMed  Google Scholar 

  • Wallrodt S, Buntz A, Wang Y, Zumbusch A, Marx A (2016) Bioorthogonally functionalized NAD+ analogues for in-cell visualization of poly(ADP-ribose) formation. Angew Chem Int Ed 55(27):7660–7664

    Article  CAS  Google Scholar 

  • Wang Y, Rösner D, Grzywa M, Marx A (2014) Chain-terminating and clickable NAD+ analogues for labeling the target proteins of ADP-ribosyltransferases. Angew Chem Int Ed Engl 53(31):8159–8162. 28 July 2014. (WILEY-VCH Verlag)

    Article  CAS  PubMed  Google Scholar 

  • Watson CY, Whish WJD, Threadgill MD (1998) Synthesis of 3-substituted benzamides and 5-substituted isoquinolin-1(2H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). Bioorg Med Chem 6(6):721–734

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Miwa M, Sugimura T (1971) Studies on poly (adenosine diphosphate-ribose): X. Properties of a partially purified poly (adenosine diphosphate-ribose) polymerase. Arch Biochem Biophy 146(2):579–586

    Google Scholar 

  • Yoneyama-Hirozane M, Matsumoto S-I, Toyoda Y, Saikatendu KS, Zama Y, Yonemori K et al (2017) Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. Biochem Biophys Res Commun 486(3):626–631

    Article  CAS  PubMed  Google Scholar 

  • Zhan P, Song Y, Itoh Y, Suzuki T, Liu X (2014) Recent advances in the structure-based rational design of TNKSIs. Mol BioSyst 10(11):2783–2799 The Royal Society of Chemistry

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Snyder SH (1992) Nitricoxidestimulatesauto-ADP-ribosylationof glyceraldehyde-3-phosphatedehydrogenase. Proc Natl Acad Sci U S A 89:9382–9385

    Google Scholar 

  • Zingarelli B, Salzman AL, Szabó C (1998) Genetic disruption of poly (ADP-Ribose) synthetase inhibits the expression of P-Selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 13;83(1):85–94. 13 Jul 1998. (American Heart Association, Inc)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirby, I.T., Cohen, M.S. (2018). Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. In: Cravatt, B., Hsu, KL., Weerapana, E. (eds) Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, vol 420. Springer, Cham. https://doi.org/10.1007/82_2018_137

Download citation

Publish with us

Policies and ethics