Skip to main content

Activity-Based Protein Profiling at the Host–Pathogen Interface

  • Chapter
  • First Online:
Book cover Activity-Based Protein Profiling

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 420))

Abstract

Activity-based protein profiling (ABPP) is a technique for selectively detecting reactive amino acids in complex proteomes with the aid of chemical probes. Using probes that target catalytically active enzymes, ABPP can rapidly define the functional proteome of a biological system. In recent years, this approach has been increasingly applied to globally profile enzymes active at the host–pathogen interface of microbial infections. From in vitro co-culture systems to animal models of infection, these studies have revealed enzyme-mediated mechanisms of microbial pathogenicity, host immunity, and metabolic adaptation that dynamically shape pathogen interactions with the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashida H, Kim M, Sasakawa C (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12:399–413

    Article  CAS  Google Scholar 

  • Bachovchin DA, Brown SJ, Rosen H, Cravatt BF (2009) Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 27:387–394

    Article  CAS  Google Scholar 

  • Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M (2015) Exploiting host immunity: the Salmonella paradigm. Trends Immunol 36:112–120

    Article  CAS  Google Scholar 

  • Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N et al (2015) A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 7:306ra148

    Google Scholar 

  • Broz P, Ohlson MB, Monack DM (2012) Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3:62–70

    Article  Google Scholar 

  • Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M, Gagneux S, Sacchettini JC, Ioerger TR, Fortune SM (2018) TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14:e1006939

    Article  Google Scholar 

  • Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, MacNaughton WK, Wallace JL, Hollenberg MD, Bunnett NW, Garcia-Villar R et al (2002) Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am J Pathol 161:1903–1915

    Article  CAS  Google Scholar 

  • Child MA, Hall CI, Beck JR, Ofori LO, Albrow VE, Garland M, Bowyer PW, Bradley PJ, Powers JC, Boothroyd JC et al (2013) Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nat Chem Biol 9:651–656

    Article  CAS  Google Scholar 

  • Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    Article  CAS  Google Scholar 

  • Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640

    Article  CAS  Google Scholar 

  • Duell BL, Cripps AW, Schembri MA, Ulett GC (2011) Epithelial cell coculture models for studying infectious diseases: benefits and limitations. J Biomed Biotechnol 2011:852419

    Article  Google Scholar 

  • Esmon CT, Xu J, Lupu F (2011) Innate immunity and coagulation. J Thromb Haemost 9(Suppl 1):182–188

    Article  CAS  Google Scholar 

  • Gloeckl S, Ong VA, Patel P, Tyndall JD, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB et al (2013) Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol 89:676–689

    Article  CAS  Google Scholar 

  • Grosse-Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RAL (2018) The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. Plant Biotechnol J 16:1068–1084

    Article  CAS  Google Scholar 

  • Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS et al (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168:517–526

    Article  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  • Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102:8363–8368

    Article  CAS  Google Scholar 

  • Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET et al (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12:268–274

    Article  CAS  Google Scholar 

  • Heal WP, Dang TH, Tate EW (2011) Activity-based probes: discovering new biology and new drug targets. Chem Soc Rev 40:246–257

    Article  CAS  Google Scholar 

  • Heal WP, Tate EW (2012) Application of activity-based protein profiling to the study of microbial pathogenesis. Top Curr Chem 324:115–135

    Article  CAS  Google Scholar 

  • Hernandez-Cervantes R, Mendez-Diaz M, Prospero-Garcia O, Morales-Montor J (2017) Immunoregulatory role of cannabinoids during infectious disease. NeuroImmunoModulation 24:183–199

    Article  CAS  Google Scholar 

  • Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJ (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584

    Article  Google Scholar 

  • Kanca O, Bellen HJ, Schnorrer F (2017) Gene tagging strategies to assess protein expression, localization, and function in Drosophila. Genetics 207:389–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karcz SR, Podesta RB, Siddiqui AA, Dekaban GA, Strejan GH, Clarke MW (1991) Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol 49:333–336

    Article  CAS  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  CAS  Google Scholar 

  • Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RA (2009) Diversity of serine hydrolase activities of unchallenged and Botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 8:1082–1093

    Article  CAS  Google Scholar 

  • Kaschani F, Gu C, van der Hoorn RA (2012) Activity-based protein profiling of infected plants. Methods Mol Biol 835:47–59

    Article  CAS  Google Scholar 

  • Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS et al (2011) Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiol 155:477–489

    Article  CAS  Google Scholar 

  • Kummari E, Alugubelly N, Hsu CY, Dong B, Nanduri B, Edelmann MJ (2015) Activity-based proteomic profiling of deubiquitinating enzymes in Salmonella-infected macrophages leads to identification of putative function of UCH-L5 in inflammasome regulation. PLoS ONE 10:e0135531

    Article  Google Scholar 

  • Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK (2018) Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 444:125–141

    Article  CAS  Google Scholar 

  • Lentz CS, Ordonez AA, Kasperkiewicz P, La Greca F, O’Donoghue AJ, Schulze CJ, Powers JC, Craik CS, Drag M, Jain SK et al (2016) Design of selective substrates and activity-based probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect Dis 2:807–815

    Article  CAS  Google Scholar 

  • Lu H, Wang Z, Shabab M, Oeljeklaus J, Verhelst SH, Kaschani F, Kaiser M, Bogyo M, van der Hoorn RA (2013) A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB. Chem Biol 20:168–176

    Article  CAS  Google Scholar 

  • Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174

    Article  CAS  Google Scholar 

  • Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW (2017) Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease. J Proteome Res 16:1014–1026

    Article  CAS  Google Scholar 

  • Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192

    Article  CAS  Google Scholar 

  • Misas-Villamil JC, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovacs J, Kaschani F, Schilasky S, Emon AE, Ruben M, Kaiser M et al (2017) Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. Plant J 90:418–430

    Article  CAS  Google Scholar 

  • Moellering RE, Cravatt BF (2012) How chemoproteomics can enable drug discovery and development. Chem Biol 19:11–22

    Article  CAS  Google Scholar 

  • Place DE, Kanneganti TD (2018) Recent advances in inflammasome biology. Curr Opin Immunol 50:32–38

    Article  CAS  Google Scholar 

  • Puri AW, Bogyo M (2013) Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 52:5985–5996

    Article  CAS  Google Scholar 

  • Puri AW, Broz P, Shen A, Monack DM, Bogyo M (2012) Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat Chem Biol 8:745–747

    Article  CAS  Google Scholar 

  • Rooney HC, Van’t Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786

    Article  CAS  Google Scholar 

  • Sadler NC, Wright AT (2015) Activity-based protein profiling of microbes. Curr Opin Chem Biol 24:139–144

    Article  CAS  Google Scholar 

  • Shahiduzzaman M, Coombs KM (2012) Activity based protein profiling to detect serine hydrolase alterations in virus infected cells. Front Microbiol 3:308

    Article  CAS  Google Scholar 

  • Shindo T, Kaschani F, Yang F, Kovacs J, Tian F, Kourelis J, Hong TN, Colby T, Shabab M, Chawla R et al (2016) Screen of non-annotated small secreted proteins of Pseudomonas syringae reveals a virulence factor that inhibits tomato immune proteases. PLoS Pathog 12:e1005874

    Article  Google Scholar 

  • Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 106:1654–1659

    Article  CAS  Google Scholar 

  • Stone SE, Glenn WS, Hamblin GD, Tirrell DA (2017) Cell-selective proteomics for biological discovery. Curr Opin Chem Biol 36:50–57

    Article  CAS  Google Scholar 

  • Strmiskova M, Desrochers GF, Shaw TA, Powdrill MH, Lafreniere MA, Pezacki JP (2016) Chemical methods for probing virus-host proteomic interactions. ACS Infect Dis 2:773–786

    Article  CAS  Google Scholar 

  • Surmann K, Simon M, Hildebrandt P, Pfortner H, Michalik S, Stentzel S, Steil L, Dhople VM, Bernhardt J, Schluter R et al (2015) A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection. J Proteomics 128:203–217

    Article  CAS  Google Scholar 

  • Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422

    Article  CAS  Google Scholar 

  • Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377

    Article  CAS  Google Scholar 

  • Toruno TY, Stergiopoulos I, Coaker G (2016) Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu Rev Phytopathol 54:419–441

    Article  CAS  Google Scholar 

  • van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  Google Scholar 

  • van der Hoorn RA, Leeuwenburgh MA, Bogyo M, Joosten MH, Peck SC (2004) Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135:1170–1178

    Article  Google Scholar 

  • van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963

    Article  Google Scholar 

  • Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819

    Article  CAS  Google Scholar 

  • Wang Q, Da’dara AA, Skelly PJ (2017) The human blood parasite Schistosoma mansoni expresses extracellular tegumental calpains that cleave the blood clotting protein fibronectin. Sci Rep 7:12912

    Article  Google Scholar 

  • Wiedner SD, Anderson LN, Sadler NC, Chrisler WB, Kodali VK, Smith RD, Wright AT (2014) Organelle-specific activity-based protein profiling in living cells. Angew Chem Int Ed Engl 53:2919–2922

    Article  CAS  Google Scholar 

  • Wiedner SD, Burnum KE, Pederson LM, Anderson LN, Fortuin S, Chauvigne- Hines LM, Shukla AK, Ansong C, Panisko EA, Smith RD et al (2012) Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum. J Biol Chem 287:33447–33459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Pamela Chang, Joshua Gendron, Yannick Jacob, and Lindsay Triplett for providing helpful feedback on this manuscript. Y. K. was supported by an NIH Predoctoral Training Grant (T32GM067543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula K. Hatzios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovalyova, Y., Hatzios, S.K. (2018). Activity-Based Protein Profiling at the Host–Pathogen Interface. In: Cravatt, B., Hsu, KL., Weerapana, E. (eds) Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, vol 420. Springer, Cham. https://doi.org/10.1007/82_2018_129

Download citation

Publish with us

Policies and ethics