Skip to main content

Agrobacterium: A Genome-Editing Tool-Delivery System

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

With the rapidly increasing global population, it will be extremely challenging to provide food to the world without increasing food production by at least 70% over the next 30 years. As we reach the limits of expanding arable land, the responsibility of meeting this production goal will rely on increasing yields. Traditional plant breeding practices will not be able to realistically meet these expectations, thrusting plant biotechnology into the limelight to fulfill these needs. Better varieties will need to be developed faster and with the least amount of regulatory hurdles. With the need to add, delete, and substitute genes into existing genomes, the field of genome editing and gene targeting is now rapidly developing with numerous new technologies coming to the forefront. Agrobacterium-mediated crop transformation has been the most utilized method to generate transgenic varieties that are better yielding, have new traits, and are disease and pathogen resistant. Genome-editing technologies rely on the creation of double-strand breaks (DSBs) in the genomic DNA of target species to facilitate gene disruption, addition, or replacement through either non-homologous end joining or homology-dependent repair mechanisms. DSBs can be introduced through the use of zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or clustered regularly interspersed short palindromic repeats (CRISPR)/Cas nucleases, among others. Agrobacterium strains have been employed to deliver the reagents for genome editing to the specific target cells. Understanding the biology of transformation from the perspective not only of Agrobacterium, but also of the host, from processing of T-DNA to its integration in the host genome, has resulted in a wealth of information that has been used to engineer Agrobacterium strains having increased virulence. As more technologies are being developed, that will help overcome issues of Agrobacterium host range and random integration of DNA, combined with highly sequence-specific nucleases, a robust crop genome-editing toolkit finally seems attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 20 September 2018

    By mistake the chapter was published with incorrect author name. The chapter has now been corrected.

References

  • Anand A, Bass SH, Wu E et al (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson DJ, Birch RG (2012) Minimal handling and superbinary vectors facilitate efficient, Agrobacterium-mediated, transformation of sugarcane (Saccharum spp. hybrid). Trop Plant Biol 5:183–192

    CAS  Google Scholar 

  • Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayar A, Wehrkamp-Richter S, Laffaire J-B et al (2013) Gene targeting in maize by somatic ectopic recombination. Plant Biotech J 11:305–314

    CAS  Google Scholar 

  • Bakó L, Umeda M, Tiburcio AF et al (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100:10108–10113

    PubMed  PubMed Central  Google Scholar 

  • Barton KA, Binns AN, Matzke AJ et al (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043

    CAS  PubMed  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709

    CAS  PubMed  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10(8):e0136064

    PubMed  PubMed Central  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    CAS  PubMed  Google Scholar 

  • Caplan A, Herrera-Estrella L, Inze D et al (1983) Introduction of genetic material into plant cells. Science 222:815–821

    CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotech J 15:257–268

    CAS  Google Scholar 

  • Che P, Anand A, Wu E et al (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotech J 16:1388–1395

    Article  Google Scholar 

  • Christie PJ (2001) Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Robbins T, Nijjar C et al (1993) Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5:371–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V, Lee L-Y, Vyas S et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    CAS  PubMed  Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts—isolation and development. Ann Rev Plant Physiol 23:29–50

    CAS  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Xiong Y, Michno J-M et al (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Engelmann JC, Efetova M et al (2006) An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Pater S, Klemann BJPM, Hooykaas PJJ (2018) True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template. Sci Rep 8:3338

    PubMed  PubMed Central  Google Scholar 

  • de Pater S, Neuteboom LW, Pinas JE et al (2009) ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7:821–835

    PubMed  Google Scholar 

  • de Pater S, Pinas JE, Hooykaas PJJ et al (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11:510–515

    Google Scholar 

  • D’Halluin K, Vanderstraeten C, van Hulle J et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11:933–941

    PubMed  PubMed Central  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P et al (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant-Microbe Interact 19:665–681

    CAS  PubMed  Google Scholar 

  • Du H, Zeng X, Zhao M et al (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotech 217:90–97

    CAS  Google Scholar 

  • Endo M, Osakabe K, Ono K et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166

    CAS  PubMed  Google Scholar 

  • FAO/IAEA (1977) Manual on mutation breeding, 2nd edn, Technical Report Series, No. 119. Food and Agricultural Organization, International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Federoff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Google Scholar 

  • Feng C, Yuan J, Wang R et al (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43:37–43

    PubMed  Google Scholar 

  • Forsyth A, Weeks T, Richael C et al (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7:1–12

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser M, Weck E, Döring HP et al (1982) Genomic clones of a wild-type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J 11:1455–1460

    Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-Mediated Plant Transformation: the Biology behind the “Gene-Jockeying” Tool. Microbiol Mol Biol Rev 67:16–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Google Scholar 

  • Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Bennett S, Kumar S et al (2017) Methods and compositions for recombination a gene-deficient strains of Agrobacterium tumefaciens. United States Patent 9(765):350

    Google Scholar 

  • Hansen G, Das A, Chilton M-D (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168

    CAS  PubMed  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, DeBlock M, Messens E et al (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsh PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Hommelsheim C, Frantzeskakis L, Uelker B (2016) Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants. United States Patent Application 2016/0060637

    Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT et al (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussey G (1978) The application of tissue culture to the vegetative propagation of plants. Sci Prog 65:185–208

    Google Scholar 

  • Hwang H-H, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16:3148–3167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    CAS  PubMed  Google Scholar 

  • Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    CAS  PubMed  Google Scholar 

  • Jin S, Komari T, Gordon MP et al (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489

    CAS  PubMed  Google Scholar 

  • Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep 35:1469–1474

    CAS  PubMed  Google Scholar 

  • Kay S, Hahn S, Marois E et al (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    CAS  PubMed  Google Scholar 

  • Kim S, Kim D, Cho SW et al (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-I, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under nonselective conditions. Plant J 51:779–791

    CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinhofs A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Ann Rev Genet 11:79–101

    CAS  PubMed  Google Scholar 

  • Kohli A, Twyman RM, Abranches R et al (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ et al (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    CAS  Google Scholar 

  • Lahaye T, Bonas U (2001) Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6:479–485

    CAS  PubMed  Google Scholar 

  • Lai E-M, Kado CI (2000) The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8:361–369

    CAS  PubMed  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967

    CAS  Google Scholar 

  • Lee C-W, Efetova M, Engelmann JC et al (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Lund P, Lowe K et al (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2:415–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee L-Y, Fang M-J, Kuang L-Y et al (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24

    PubMed  PubMed Central  Google Scholar 

  • Levings CS III, Pring DR (1979) Mitochondrial DNA of higher plants and genetic engineering. In: Setlow JK et al (eds) Genetic engineering. Plenum Press, New York, pp 205–222

    Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotech 30:390–392

    CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D et al (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lor VS, Starker CG, Voytas DF et al (2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166:1288–1291

    PubMed  PubMed Central  Google Scholar 

  • Louwerse JD, van Lier MCM, van der Steen DM et al (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki H, Nakajima R, Nishiyama J et al (1990) Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol 172:610–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melchers G, Sacristan MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Commun 43:203–218

    Google Scholar 

  • Merlo DJ, Russell SM, Retallack DN et al (2017) Method of increasing plant transformation frequency using modified strains of Agrobacteria. United States Patent 9(617):551

    Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    PubMed  Google Scholar 

  • Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    CAS  PubMed  Google Scholar 

  • Morrison RA, Evans DA (1988) Haploid plants from tissue culture: new plant varieties in a shortened time frame. Bio/Technology 6:684–690

    Google Scholar 

  • Murashige T (1974) Plant propagation through tissue cultures. Ann Rev Plant Physiol 25:135–166

    CAS  Google Scholar 

  • Mysore KS, Bassuner B, Deng XB et al (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11:668–683

    CAS  PubMed  Google Scholar 

  • Nam J, Mysore KS, Zheng C et al (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438

    CAS  PubMed  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214

    CAS  PubMed  Google Scholar 

  • Narasimhulu SB, Deng XB, Sarria R et al (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newell CA (2000) Plant transformation technology: developments and applications. Mol Biotechnol 16:53–65

    CAS  PubMed  Google Scholar 

  • Olhoft PM, Flagel LE, Somers DA (2004) T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonary-node method. Plant Biotechnol J 2:289–300

    CAS  PubMed  Google Scholar 

  • Ooms G, Hooykaas PJJ, Moolenaar G et al (1981) Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14:33–50

    CAS  PubMed  Google Scholar 

  • Orlowski J, Boniecki M, Bujnicki JM (2007) I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 23:527–530

    CAS  PubMed  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa K, Wakasa Y, Ogo Y et al (2012) Development of an efficient Agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (Waxy) and β1,2-Xylosyltransferase. Plant Cell Physiol 53:755–761

    CAS  PubMed  Google Scholar 

  • Palanichelvam K, Oger P, Clough SJ et al (2000) A second T-region of the soybean-supervirulent chrysopine type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant-Microbe Interact 13:1081–1091

    CAS  PubMed  Google Scholar 

  • Pastwa E, Blasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908

    CAS  PubMed  Google Scholar 

  • Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66

    CAS  PubMed  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    CAS  PubMed  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    CAS  PubMed  Google Scholar 

  • Rolloos M, Hooykaas PJJ, van der Zaal BJ (2015) Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast. Sci Rep 5:8345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Römer P, Hahn S, Jordan T et al (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    PubMed  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardesai N, Lee L-Y, Chen H et al (2013) Cytokinins secreted by Agrobacterium promote transformation by repressing a plant Myb transcription factor. Science Sig 6(302):ra100

    PubMed  Google Scholar 

  • Schrammeijer B, den Dulk-Ras A, Vergunst AC et al (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrammeijer B, Risseeuw E, Pansegrau W et al (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11:258–262

    CAS  PubMed  Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    CAS  PubMed  Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci USA 89:11837–11841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simone M, McCullen CA, Stahl LE et al (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293

    CAS  PubMed  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell Publishing, Ames, IA

    Google Scholar 

  • Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429–1438

    CAS  PubMed  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M et al (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • UN WPP (2015) United Nations, Department of Economic and Social Affairs, Population Division. World population prospects 2015—Data booklet (ST/ESA/SER.A/377) (https://esa.un.org/unpd/wpp/Publications/Files/WPP2015_DataBooklet.pdf)

  • Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • van Kregten M, de Boer P, Hooykaas PJJ et al (2011a) Translocation of novel recombinant effector proteins from Agrobacterium tumefaciens to Arabidopsis thaliana. In: VirD2 of Agrobacterium tumefaciens: functional domains and biotechnological applications. Ph.D. thesis, Leiden University

    Google Scholar 

  • van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat Plants 2:16164

    PubMed  Google Scholar 

  • van Kregten M, Hooykaas PJ, van der Zaal BJ (2011b) Agrobacterium-mediated delivery of a meganuclease into target plant cells. In: VirD2 of Agrobacterium tumefaciens: functional domains and biotechnological applications. Ph.D. thesis, Leiden University

    Google Scholar 

  • Veena, Jiang H, Doerge RW et al (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236

    CAS  PubMed  Google Scholar 

  • Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A et al (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    CAS  PubMed  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A et al (2005) Positive charges an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voytas DF, Ausubel FM (1988) A copia-like transposable element family in Arabidopsis thaliana. Nature 336:242–244

    CAS  PubMed  Google Scholar 

  • Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242:927–930

    CAS  Google Scholar 

  • Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162:390–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H-L, Dong L, Wang Z-P et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    PubMed  PubMed Central  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jacobs TB, Xue L-J et al (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol 208:298–301

    CAS  PubMed  Google Scholar 

  • Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics 43:25–36

    PubMed  Google Scholar 

  • Zhu Y, Nam J, Humara JM et al (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan JR, Ward D, Zambryski PC (1998) Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1:649–655

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Stanton Gelvin for permission to include some unpublished data from his laboratory. Some of the work described here was supported by the Applied Science and Technology function of Corteva Agriscience™, Agriculture Division of DowDuPont. The authors apologize to their colleagues whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagesh Sardesai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sardesai, N., Subramanyam, S. (2018). Agrobacterium: A Genome-Editing Tool-Delivery System. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_101

Download citation

Publish with us

Policies and ethics