Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 410))

Abstract

Co-inhibitory receptors play a key role in regulating T cell responses and maintaining immune homeostasis. Their inhibitory function prevents autoimmune responses but also restricts the ability of T cells to mount effective immune responses against tumors or persistent pathogens. T cells express a module of co-inhibitory receptors, which display great diversity in expression, structure, and function. Here, we focus on the co-inhibitory receptors Tim-3, Lag-3, and TIGIT and how they regulate T cell function, maintenance of self-tolerance, their role in regulating ongoing T cell responses at peripheral tissues, and their synergistic effects in regulating autoimmunity and antitumor responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson AC, Lord GM, Dardalhon V, Lee DH, Sabatos-Peyton CA, Glimcher LH, Kuchroo VK (2010) T-bet, a Th1 transcription factor regulates the expression of Tim-3. Eur J Immunol 40(3):859–866. doi:10.1002/eji.200939842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. doi:10.1172/JCI46102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687. doi:10.1038/nature04444

    Article  CAS  PubMed  Google Scholar 

  • Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, Pan X, Drake CG, Korman AJ, Vignali DA (2011) Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol 187(7):3493–3498. doi:10.4049/jimmunol.1100714

    Article  CAS  PubMed  Google Scholar 

  • Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z (2014) T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 59(5):1715–1725. doi:10.1002/hep.26968

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (2009) Coregulation of CD8 + T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37. doi:10.1038/ni.1679

    Article  CAS  PubMed  Google Scholar 

  • Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M (2009) A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 39(3):695–703. doi:10.1002/eji.200839116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567. doi:10.1084/jem.20030788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton BR, Britton GJ, Fang H, Verhagen J, Smithers B, Sabatos-Peyton CA, Carney LJ, Gough J, Strobel S, Wraith DC (2014) Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun 5:4741. doi:10.1038/ncomms5741

    Article  CAS  PubMed  Google Scholar 

  • Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44(5):1069–1078. doi:10.1016/j.immuni.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  • Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, Parmiani G, Belli F, Rivoltini L, Castelli C (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. Journal of immunology 184(11):6545–6551. doi:10.4049/jimmunol.0903879

    Article  CAS  Google Scholar 

  • Cao E, Zang X, Ramagopal UA, Mukhopadhaya A, Federov A, Federov E, Zencheck WD, Lary JW, Cole JL, Deng H, Xiao H, DiLorenzo TP, Allison JP, Nathenson SG, Almo SC (2007) T cell immunoglobulin mucin-3 crystal structure reveals a novel ligand binding surface. Immunity 26:311–321

    Article  CAS  PubMed  Google Scholar 

  • Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R (2009) Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 58(9):1517–1526. doi:10.1007/s00262-009-0682-y

    Article  CAS  PubMed  Google Scholar 

  • Chan CW, Kay LS, Khadaroo RG, Chan MW, Lakatoo S, Young KJ, Zhang L, Gorczynski RM, Cattral M, Rotstein O, Levy GA (2003) Soluble fibrinogen-like protein 2/fibroleukin exhibits immunosuppressive properties: suppressing T cell proliferation and inhibiting maturation of bone marrow-derived dendritic cells. J Immunol 170(8):4036–4044

    Article  CAS  PubMed  Google Scholar 

  • Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438. doi:10.1038/ni.2850

    Article  CAS  PubMed  Google Scholar 

  • Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ, Zarour HM (2015) TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest 125(5):2046–2058. doi:10.1172/JCI80445

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. doi:10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  • Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, Hammond KB, Clayton KL, Ishii N, Abdel-Mohsen M, Liegler T, Mitchell BI, Hecht FM, Ostrowski M, Shikuma CM, Hansen SG, Maurer M, Korman AJ, Deeks SG, Sacha JB, Ndhlovu LC (2016) TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog 12(1):e1005349. doi:10.1371/journal.ppat.1005349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13(9):832–842. doi:10.1038/ni.2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. doi:10.1126/science.342.6165.1432

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Kim KS, Bergelson JM (2007) Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J 26(17):4016–4028. doi:10.1038/sj.emboj.7601831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N (2014) Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2(5):410–422. doi:10.1158/2326-6066.CIR-13-0171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, Ahuja R, Nguyen K, Freeman GJ, Greenfield EA, Sobel RA, Kuchroo VK (2005) CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 175(3):1558–1565 175/3/1558 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Dardalhon V, Anderson AC, Karman J, Apetoh L, Chandwaskar R, Lee DH, Cornejo M, Nishi N, Yamauchi A, Quintana FJ, Sobel RA, Hirashima M, Kuchroo VK (2010) Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b + Ly-6G + myeloid cells. J Immunol 185(3):1383–1392. doi:10.4049/jimmunol.0903275

    Article  CAS  PubMed  Google Scholar 

  • Dejean AS, Beisner DR, Ch’en IL, Kerdiles YM, Babour A, Arden KC, Castrillon DH, DePinho RA, Hedrick SM (2009) Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10(5):504–513. doi:10.1038/ni.1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184(4):1918–1930. doi:10.4049/jimmunol.0903059

    Article  CAS  PubMed  Google Scholar 

  • Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ (2012) Network analysis reveals centrally connected genes and pathways involved in CD8 + T cell exhaustion versus memory. Immunity 37(6):1130–1144. doi:10.1016/j.immuni.2012.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 costimulation: from mechanism to therapy. Immunity 44(5):973–988. doi:10.1016/j.immuni.2016.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212 10.1038/ni1003ni1003[pii]

    Article  CAS  PubMed  Google Scholar 

  • Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8 + T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186. doi:10.1084/jem.20100637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B, Oxenius A (2012) Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J Exp Med 209(13):2485–2499. doi:10.1084/jem.20121015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromentin R, Bakeman W, Lawani MB, Khoury G, Hartogensis W, DaFonseca S, Killian M, Epling L, Hoh R, Sinclair E, Hecht FM, Bacchetti P, Deeks SG, Lewin SR, Sekaly RP, Chomont N (2016) CD4 + T cells expressing PD-1, TIGIT and LAG-3 contribute to HIV persistence during ART. PLoS Pathog 12(7):e1005761. doi:10.1371/journal.ppat.1005761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172(7):3994–3998

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman CA, Yeh WI, Seay HR, Saikumar Lakshmi P, Chopra G, Zhang L, Perry DJ, McClymont SA, Yadav M, Lopez MC, Baker HV, Zhang Y, Li Y, Whitley M, von Schack D, Atkinson MA, Bluestone JA, Brusko TM (2015) Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol 195(1):145–155. doi:10.4049/jimmunol.1402381

    Article  CAS  PubMed  Google Scholar 

  • Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746. doi:10.1038/nm.3179

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, Sun J, Yang Q, Zhang X, Lu B (2012) TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE 7(2):e30676. doi:10.1371/journal.pone.0030676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA (2014) Enhanced suppressor function of TIM-3 + FoxP3 + regulatory T cells. Eur J Immunol 44(9):2703–2711. doi:10.1002/eji.201344392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason MK, Lenvik TR, McCullar V, Felices M, O’Brien MS, Cooley SA, Verneris MR, Cichocki F, Holman CJ, Panoskaltsis-Mortari A, Niki T, Hirashima M, Blazar BR, Miller JS (2012) Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119(13):3064–3072. doi:10.1182/blood-2011-06-360321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ, Castelblanco N, Kuchroo V, Gretch DR, Rosen HR (2009) Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4 + and CD8 + T cells. J Virol 83:9122–9130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravitz L (2013) Cancer immunotherapy. Nature 504(7480):S1. doi:10.1038/504S1a

    Article  CAS  PubMed  Google Scholar 

  • Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101 10.1038/ni846 ni846 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG (2007) LAG-3 regulates CD8 + T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383–3392. doi:10.1172/JCI31184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Thornley TB, Gao W, Larocca R, Turka LA, Kuchroo VK, Strom TB (2012) Allograft rejection is restrained by short-lived TIM-3 + PD-1 + Foxp3 + Tregs. J Clin Invest 122(7):2395–2404. doi:10.1172/JCI45138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafalla JC, Claser C, Couper KN, Grau GE, Renia L, de Souza JB, Riley EM (2012) The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to plasmodium-induced acute immune pathology. PLoS Pathog 8(2):e1002504. doi:10.1371/journal.ppat.1002504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafler JP, Maier LM, Cooper JD, Plagnol V, Hinks A, Simmonds MJ, Stevens HE, Walker NM, Healy B, Howson JM, Maisuria M, Duley S, Coleman G, Gough SC, Worthington J, Kuchroo VK, Wicker LS, Todd JA (2009) CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 10(1):5–10. doi:10.1038/gene.2008.82

    Article  CAS  PubMed  Google Scholar 

  • Hannier S, Tournier M, Bismuth G, Triebel F (1998) CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol 161(8):4058–4065

    CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503–513. doi:10.1016/j.immuni.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517(7534):386–390. doi:10.1038/nature13848

    Article  CAS  PubMed  Google Scholar 

  • Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F (1995) CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25(9):2718–2721. doi:10.1002/eji.1830250949

    Article  CAS  PubMed  Google Scholar 

  • Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S (2016) Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 136(1):255–263. doi:10.1038/JID.2015.404

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman P, Sada-Ovalle I, Beladi S, Anderson AC, Dardalhon V, Hotta C, Kuchroo VK, Behar SM (2010) Tim3 binding to galectin-9 stimulates antimicrobial immunity. J Exp Med 207(11):2343–2354. doi:10.1084/jem.20100687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, Freeman GJ, Kuchroo VK, Ahmed R (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107(33):14733–14738. doi:10.1073/pnas.1009731107

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, Eaton DL, Grogan JL (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937. doi:10.1016/j.ccell.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  • Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342. doi:10.4049/jimmunol.1003081

    Article  CAS  PubMed  Google Scholar 

  • Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg Cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581. doi:10.1016/j.immuni.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 205(12):2763–2779. doi:10.1084/jem.20081398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, Hsu CY, Huang CT, Su WT, Chu YY, Lin CY (2015) Apoptosis of tumor infiltrating effector TIM-3 + CD8 + T cells in colon cancer. Sci Rep 5:15659. doi:10.1038/srep15659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasagi S, Kawano S, Kumagai S (2011) PD-1 and autoimmunity. Critical reviews in immunology 31(4):265–295

    Article  CAS  PubMed  Google Scholar 

  • Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K (2005) Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol 35(7):2081–2088. doi:10.1002/eji.200526090

    Article  CAS  PubMed  Google Scholar 

  • Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8 + T Cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3(4):412–423. doi:10.1158/2326-6066.CIR-14-0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125 (11):4053–4062. doi:10.1172/JCI81187

  • Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, Porcelli SA, Almo SC, Nathenson SG, Jacobs WR Jr (2010) Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci USA 107(30):13402–13407. doi:10.1073/pnas.1007394107

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Goverman JM (2013) The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J Immunol 190(10):4991–4999. doi:10.4049/jimmunol.1300083

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Su EW, Zhu C, Hainline S, Phuah J, Moroco JA, Smithgall TE, Kuchroo VK, Kane LP (2011) Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. Mol Cell Biol 31(19):3963–3974. doi:10.1128/MCB.05297-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu W, Ramsdell F, Blazar BR, Lewis KE (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915. doi:10.1002/eji.201041136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, Li P, Yang X, Fan Z (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657. doi:10.1074/jbc.M114.572420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S, Tybulewicz V, Vignali D, Clynes R (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180(9):5916–5926

    Article  CAS  PubMed  Google Scholar 

  • Linsley P, Brady W, Urnes M, Grosmaire L, Damle N, Ledbetter J (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174(3):561–569

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B, Fan Z (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20(3):456–464. doi:10.1038/cdd.2012.141

    Article  CAS  PubMed  Google Scholar 

  • Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol. doi:10.4049/jimmunol.1103627

  • Lozano E, Joller N, Cao Y, Kuchroo V, Hafler DA (2013) The CD226/CD155 Interaction Regulates the Proinflammatory (Th1/Th17)/Anti-Inflammatory (Th2) Balance in Humans. J Immunol. doi:10.4049/jimmunol.1300945

  • Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K (2010) Tumor-infiltrating NY-ESO-1-specific CD8 + T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 107(17):7875–7880. doi:10.1073/pnas.1003345107

    Article  PubMed  PubMed Central  Google Scholar 

  • McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM, Gretch DR, Rosen HR (2010) Tim-3 expression on PD-1 + HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120(12):4546–4557. doi:10.1172/JCI43127

  • Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56(5):855–865 0092-8674(89)90690-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Meyers JH, Sabatos CA, Chakravarti S, Kuchroo VK (2005) The TIM gene family regulates autoimmune and allergic diseases. Trends Mol Med 11(8):362–369. doi:10.1016/j.molmed.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  • Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541. doi:10.1038/415536a415536a

    Article  CAS  PubMed  Google Scholar 

  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362(6422):758–761. doi:10.1038/362758a0

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H, Okumura K (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113(16):3821–3830. doi:10.1182/blood-2008-10-185884

    Article  CAS  PubMed  Google Scholar 

  • Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119(16):3734–3743. doi:10.1182/blood-2011-11-392951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebbia G, Peppa D, Schurich A, Khanna P, Singh HD, Cheng Y, Rosenberg W, Dusheiko G, Gilson R, ChinAleong J, Kennedy P, Maini MK (2012) Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PloS one 7(10):e47648. doi:10.1371/journal.pone.0047648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 71 (10):3540–3551. doi:10.1158/0008-5472.CAN-11-0096

  • Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127(4):759–767. doi:10.1002/ijc.25429

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151 S1074-7613(00)80089-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291(5502):319–322. doi:10.1126/science.291.5502.319291/5502/319

    Article  CAS  PubMed  Google Scholar 

  • Oikawa T, Kamimura Y, Akiba H, Yagita H, Okumura K, Takahashi H, Zeniya M, Tajiri H, Azuma M (2006) Preferential involvement of Tim-3 in the regulation of hepatic CD8 + T cells in murine acute graft-versus-host disease. J Immunol 177(7):4281–4287

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F, Yoshida T, Kato Y, Fagarasan S, Muramatsu M, Eto T, Hioki K, Honjo T (2011) PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Experimental Med 208(2):395–407. doi:10.1084/jem.20100466

    Article  CAS  Google Scholar 

  • Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36(4):265–276. doi:10.1016/j.it.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu HQ, Bradfield JP, Grant SF, Hakonarson H, Polychronakos C, Type IDGC (2009) Remapping the type I diabetes association of the CTLA4 locus. Genes and immunity 10(Suppl 1):27–32. doi:10.1038/gene.2009.88

    Article  CAS  Google Scholar 

  • Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, McKinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400. doi:10.1038/nm.2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter K, Agnellini P, Oxenius A (2010) On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection. Int Immunol 22(1):13–23. doi:10.1093/intimm/dxp107

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, K-investigators (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372(26):2521–2532. doi:10.1056/NEJMoa1503093

  • Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4(11):1102–1110 10.1038/ni988ni988[pii]

    Article  CAS  PubMed  Google Scholar 

  • Sada-Ovalle I, Chavez-Galan L, Torre-Bouscoulet L, Nava-Gamino L, Barrera L, Jayaraman P, Torres-Rojas M, Salazar-Lezama MA, Behar SM (2012) The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with mycobacterium tuberculosis. J Immunol 189(12):5896–5902. doi:10.4049/jimmunol.1200990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. doi:10.1084/jem.20100643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, Anderson AC (2013) TIM3 + FOXP3 + regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2(4):e23849. doi:10.4161/onci.23849

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T, Kuchroo VK, Gutierrez-Ramos JC, Coyle AJ, Strom TB (2003) Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 4(11):1093–1101. doi:10.1038/ni987

    Article  PubMed  Google Scholar 

  • Santiago C, Ballestros A, Martinez-Munoz L, Mellado M, Kaplan GG, Freeman GJ, Casanovas JM (2007a) Structures of T Cell Immunoglobulin Mucin Protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27:941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago C, Ballestros A, Tami C, Martinez-Munoz L, Kaplan GG, Casanovas JM (2007b) Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity 26:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarhan D, Cichocki F, Zhang B, Yingst A, Spellman SR, Cooley S, Verneris MR, Blazar BR, Miller JS (2016) Adaptive NK cells with Low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res 76(19):5696–5706. doi:10.1158/0008-5472.CAN-16-0839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44(5):955–972. doi:10.1016/j.immuni.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sega EI, Leveson-Gower DB, Florek M, Schneidawind D, Luong RH, Negrin RS (2014) Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation. PLoS ONE 9(1):e86551. doi:10.1371/journal.pone.0086551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, Nyman J, Sakuishi K, Kurtulus S, Gennert D, Xia J, Kwon JY, Nevin J, Herbst RH, Yanai I, Rozenblatt-Rosen O, Kuchroo VK, Regev A, Anderson AC (2016) A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell 166 (6):1500–1511 e1509. doi:10.1016/j.cell.2016.08.052

  • Song YW, Im CH, Park JH, Lee YJ, Lee EY, Lee EB, Park K (2011) T-cell immunoglobulin and mucin domain 3 genetic polymorphisms are associated with rheumatoid arthritis independent of a shared epitope status. Human Immunol 72(8):652–655. doi:10.1016/j.humimm.2011.04.007

    Article  CAS  Google Scholar 

  • Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42):17858–17863. doi:10.1073/pnas.0903474106

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, Enk J, Jonjic S, Mandelboim O (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43(8):2138–2150. doi:10.1002/eji.201243072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA. doi:10.1073/pnas.1120606109

  • Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jane-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282):189–196. doi:10.1126/science.aad0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) CTLA-4 deficient mice exhibit massive lymphoproliferation and multi-organ lymphatic infiltration: a critical negative immunoregulatory role of CTLA-4. Immunity 3:541–547

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi:10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171(5):1393–1405

    Article  CAS  PubMed  Google Scholar 

  • Vaccari M, Boasso A, Fenizia C, Fuchs D, Hryniewicz A, Morgan T, Weiss D, Doster MN, Heraud JM, Shearer GM, Franchini G (2012) Fatal pancreatitis in simian immunodeficiency virus SIV(mac251)-infected macaques treated with 2’,3’-dideoxyinosine and stavudine following cytotoxic-T-lymphocyte-associated antigen 4 and indoleamine 2,3-dioxygenase blockade. J Virol 86(1):108–113. doi:10.1128/JVI.05609-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ji B, Wang J, Cheng X, Zhou Q, Zhou J, Cao C, Guo Q (2014) Tim-3 polymorphism downregulates gene expression and is involved in the susceptibility to ankylosing spondylitis. DNA and Cell Biology 33(10):723–728. doi:10.1089/dna.2014.2456

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Li YH, Piao HL, Hong XW, Zhang D, Xu YY, Tao Y, Wang Y, Yuan MM, Li DJ, Du MR (2015a) PD-1 and Tim-3 pathways are associated with regulatory CD8 + T-cell function in decidua and maintenance of normal pregnancy. Cell Death Dis 6:e1738. doi:10.1038/cddis.2015.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Hou H, Wu S, Tang Q, Liu W, Huang M, Yin B, Huang J, Mao L, Lu Y, Sun Z (2015b) TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur J Immunol 45(10):2886–2897. doi:10.1002/eji.201545480

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse P, Penninger J, Timms E, Wakeham A, Shahinian A, Lee K, Thompson C, Griesser H, Mak T (1995) Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270:985–988

    Article  CAS  PubMed  Google Scholar 

  • Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499. doi:10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322(5899):271–275. doi:10.1126/science.1160062

    Article  CAS  PubMed  Google Scholar 

  • Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927. doi:10.1158/0008-5472.CAN-11-1620

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Vignali DA (2003) The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol 33(4):970–979. doi:10.1002/eji.200323382

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169(10):5392–5395

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA (2004) Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol 172(9):5450–5455

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, Vignali DA (2009) LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol 182(4):1885–1891. doi:10.4049/jimmunol.0800185

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Shi Y, Li S, Zhang Y, Liu Y, Wu Y, Chen Z (2012) Blockade of Tim-3 signaling restores the virus-specific CD8(+) T-cell response in patients with chronic hepatitis B. European J Immunol 42(5):1180–1191. doi:10.1002/eji.201141852

    Article  CAS  Google Scholar 

  • Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74(13):3418–3428. doi:10.1158/0008-5472.CAN-13-2690

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Huang Y, Tan L, Yu W, Chen D, Lu C, He J, Wu G, Liu X, Zhang Y (2015) Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 29(2):635–641. doi:10.1016/j.intimp.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhang Y, Zhang JP, Liang J, Li L, Zheng L (2013) Tim-3 expression defines regulatory T cells in human tumors. PLoS ONE 8(3):e58006. doi:10.1371/journal.pone.0058006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE, Ansell SM (2012) IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122(4):1271–1282. doi:10.1172/JCI59806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Jiang X, Chen G, Xiao Y, Geng S, Kang C, Zhou T, Li Y, Guo X, Xiao H, Hou C, Wang R, Lin Z, Li X, Feng J, Ma Y, Shen B, Li Y, Han G (2013) T cell Ig mucin-3 promotes homeostasis of sepsis by negatively regulating the TLR response. J Immunol 190(5):2068–2079. doi:10.4049/jimmunol.1202661

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. doi:10.1038/ni.1674

  • Zhang Y, Maksimovic J, Naselli G, Qian J, Chopin M, Blewitt ME, Oshlack A, Harrison LC (2013) Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood 122(16):2823–2836. doi:10.1182/blood-2013-02-481788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK, Blazar BR (2011) Coexpression of Tim-3 and PD-1 identifies a CD8 + T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117(17):4501–4510. doi:10.1182/blood-2010-10-310425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. doi:10.1038/ni1271

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Sakuishi K, Xiao S, Sun Z, Zaghouani S, Gu G, Wang C, Tan DJ, Wu C, Rangachari M, Pertel T, Jin HT, Ahmed R, Anderson AC, Kuchroo VK (2015) An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun 6:6072. doi:10.1038/ncomms7072

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, Yao S, Bevers S, Edil BH (2016) Identification of CD112R as a novel checkpoint for human T cells. J Exp Med 213(2):167–176. doi:10.1084/jem.20150785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (PP00P3_150663/1 to N.J.), the European Research Council (677200 to N.J.), and the National Institutes of Health (P01 AI073748, P01 NS076410, P01 AI039671, and R01 NS045937 to V.K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Kuchroo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Joller, N., Kuchroo, V.K. (2017). Tim-3, Lag-3, and TIGIT. In: Yoshimura, A. (eds) Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. Current Topics in Microbiology and Immunology, vol 410. Springer, Cham. https://doi.org/10.1007/82_2017_62

Download citation

Publish with us

Policies and ethics