Skip to main content

The Evolution of Tumor Formation in Humans and Mice with Inherited Mutations in the p53 Gene

  • Chapter
  • First Online:
Viruses, Genes, and Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 407))

Abstract

While tumors are very heterogeneous in their origins, mutations in the p53 gene and inactivation of p53 gene functions are the most common feature that predispose to the formation of cancers in humans. Inherited p53 mutations lead to different tumor types at very different frequencies and at very different ages than somatic p53 mutations. The reasons for this are explored. When the first mutation arises in a stem cell (a gatekeeper mutation) it selects for a specific subset of second mutations which in turn select for mutations in a third subset of genes. The nature of the first mutation in a tumor determines, by selection, the functional types of subsequent mutations. Inherited mutations occur at different developmental times and in different orders of mutational sequences than somatic mutations. The excess risk of developing a cancer with an inherited p53 mutation is two- to three-fold in endodermal derived tissues compared with 100- to 1000-fold for ectodermal and mesenchymal derived tissues. By contrast, endodermal derived tumors with somatic p53 mutations occur at very high frequencies (70–100%). These evolutionary restrictions upon the mutational path that tumor development may take could open up new avenues for therapy and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bar-Or RL, Ruth Maya R, Segel LA, Alon U, Levine AJ, Oren M (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci USA 97:11250–11255

    Article  ADS  CAS  Google Scholar 

  • Beckerman R, Prives C (2010) Transcriptional Regulation by p53. In: Levine AJ, Lane DP (eds) The p53 family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 63–80

    Google Scholar 

  • DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7:269–278

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon C, Chan C, Kang W, Sun Y, Emerson R, Robins H, Levine AJ (2014) The evolution of thymic lymphomas in p53 knockout mice. Genes Dev 28:2613–2620

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Raz A, Gross P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto–oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Pfeifer GP (2016) Somatic TP 53 mutations in the era of genome sequencing. In: Lozano G, Levine AJ (eds) The p53 protein from cell regulation to cancer. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 279–300

    Google Scholar 

  • Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  • Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV 40-transformed cells. Nature 278:261–263

    Article  ADS  CAS  PubMed  Google Scholar 

  • Linzer DIH, Levine AJ (1979) Characterization of a 54,000 MW cellular SV40 tumor antigen present in SV40–transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Google Scholar 

  • Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm–2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    Article  ADS  CAS  PubMed  Google Scholar 

  • Oliveri M, Hollstein M, Hainaut P (2010) TP 53 in human cancers: origins, consequences, and clinical use. In: Levine AJ, Lane DP (eds) The p53 family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 63–80

    Google Scholar 

  • Oren M, Levine AJ (1981) Immunoselection of Simian Virus 40 large T antigen messenger RNAs from transformed cells. Virology 113:790–793

    Article  CAS  PubMed  Google Scholar 

  • Reich NC, Levine AJ (1984) Growth regulation of a cellular tumor antigen, p53, in nontransformed cells. Nature 308:199–201

    Article  ADS  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine AJ (2008) Transcriptional control of human p53-regulated genes. Nat Rev Molec Cell Biol 9:402–412

    Google Scholar 

  • Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28:387–394

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus 16 or 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Wei Z, Koso H, Rust AG, Yew CC, Mann MB, Ward JM, Adams DJ, Copeland NG, Jenkins NA (2015) Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 47:142–150

    Article  CAS  PubMed  Google Scholar 

  • Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, Tovar C, Packman K, Vassilev L, Graves B (2013) Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4:466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wolf D, Rotter V (1984) Inactivation of p53 gene expression by an insertion of Maloney murine leukemia virus-like DNA sequences. Mol Cell Biol 4:1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XW, Bayle HJ, Olson D, Levine AJ (1993) The p53–mdm–2 autoregulatory feedback loop. Genes Develop 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Zambetti GP, Labow M, Levine AJ (1992) A mutant p53 protein is required for the maintenance of the transformed cell phenotype in p53 plus ras transformed cells. Proc Natl Acad Sci USA 89:3952–3956

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Cancer Institute, 5PO1 CA087497-15. The author would like to thank Drs. P. Hainaut and C. Chan for their help in the bio-informatics that was the basis for many of the ideas and conclusions expressed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Levine, A.J. (2017). The Evolution of Tumor Formation in Humans and Mice with Inherited Mutations in the p53 Gene. In: Hunter, E., Bister, K. (eds) Viruses, Genes, and Cancer. Current Topics in Microbiology and Immunology, vol 407. Springer, Cham. https://doi.org/10.1007/82_2017_5

Download citation

Publish with us

Policies and ethics