Skip to main content

Colonic Spirochetes: What Has Genomics Taught Us?

  • Chapter
  • First Online:
Spirochete Biology: The Post Genomic Era

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 415))

Abstract

The ‘colonic’ spirochetes assigned to the genus Brachyspira are slow-growing anaerobic bacteria. The genus includes both pathogenic and non-pathogenic species, and these variously colonise the large intestines of different species of birds and animals, including humans. Scientific understanding of the physiology and molecular biology of Brachyspira spp. remains very limited compared with that of other pathogenic spirochetes, and there are few descriptions of successful genetic manipulations undertaken to investigate gene function. An important boost to knowledge occurred in 2009 when, for the first time, the whole genome sequence of a Brachyspira strain (Brachyspira hyodysenteriae strain WA1) was obtained. The genomics analysis provided a significant increase in knowledge: for example, a previously unknown ~36 Kb plasmid was discovered and metabolic pathways were constructed. The study also revealed likely acquisition of genes involved in transport and central metabolic functions from other enteric bacterial species. Four subsequent publications have provided a similarly detailed analysis of other Brachyspira genomes, but of these only two included more than one strain of a species (20 strains of B. hyodysenteriae in one and three strains of B. pilosicoli in the other). Since then, more Brachyspira genomes have been made publicly available, with the sequences of at least one representative of each of the nine officially recognised species deposited at public genome repositories. All species have a single circular chromosome varying in size from ~2.5 to 3.3 Mb, with a C + G content of around 27%. In this chapter, we summarise the current knowledge and present a preliminary comparative genomic analysis conducted on 56 strains covering the official Brachyspira species. Besides providing detailed genetic maps of the bacteria, this analysis has revealed gene island rearrangements, putative phenotypes (including antimicrobial drug resistance) and genetic mutation mechanisms that enable brachyspires to evolve and respond to stress. The application of Next-Generation Sequencing (NGS) to generate genomic data from many more Brachyspira species and strains increasing will improve our understanding of these enigmatic spirochetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Backhans A, Johansson K-E, Fellström C (2010) Phenotypic and molecular characterization of Brachyspira spp. isolated from wild rodents. Environ Microbiol Report 2:720–727

    Article  CAS  Google Scholar 

  • Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z et al (2009) Genome sequence of the pathogenic intestinal spirochete Brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS ONE 4(3):e4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black M, Moolhuijzen P, Barrero R, La T, Phillips N, Hampson DJ et al (2015) Analysis of multiple Brachyspira hyodysenteriae genomes confirms that the species is relatively conserved but has potentially important strain variation. PLoS ONE 10(6):e0131050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooke CJ, Riley TV, Hampson DJ (2006) Comparison of prevalence and risk factors for faecal carriage of the intestinal spirochaetes Brachyspira aalborgi and Brachyspira pilosicoli in four Australian populations. Epidemiol Infect 134:627–634

    Article  CAS  PubMed  Google Scholar 

  • Burrough ER (2017) Swine dysentery. Vet Pathol 54:22–31

    Article  CAS  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhamel GE, Trott DJ, Muniappa N, Mathiesen MR, Tarasiuk K, Lee JI et al (1998) Canine intestinal spirochetes consist of Serpulina pilosicoli and a newly identified group provisionally designated “Serpulina canis” sp. nov. J Clin Microbiol 36:2264–2270

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Håfström T, Jansson DS, Segerman B (2011) Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer. BMC Genom 12:395

    Article  CAS  Google Scholar 

  • Hidalgo A, Carvajal A, La T, Naharro G, Rubio P, Phillips ND et al (2010) Multiple-locus variable-number tandem-repeat analysis of the swine dysentery pathogen, Brachyspira hyodysenteriae. J Clin Microbiol 48:2859–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovind-Hougen K, Birch-Andersen A, Henrik-Nielsen R, Orholm M, Pedersen JO, Teglbjaerg PS et al (1982) Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J Clin Microbiol 16:1127–1136

    PubMed  PubMed Central  CAS  Google Scholar 

  • Humphrey SB, Stanton TB, Jensen NS, Zuerner RL (1997) Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson DS, Fellström C, Johansson KE (2008) Intestinal spirochetes isolated from wild-living jackdaws, hooded crows and rooks (genus Corvus): provisionally designated “Brachyspira corvi” sp. nov. Anaerobe 14:287–295

    Article  CAS  PubMed  Google Scholar 

  • Jensen TK, Christensen AS, Boye M (2010) Brachyspira murdochii colitis in pigs. Vet Pathol 47:334–338

    Article  CAS  PubMed  Google Scholar 

  • Kinyon JM, Harris DL (1979) Treponema innocens, a new species of intestinal bacteria and emended description of the type strain of Treponema hyodysenteriae Harris et al. Int J System Bacteriol 29:102–109

    Google Scholar 

  • Komarek V, Maderner A, Spergser J, Weissenböck H (2009) Infections with weakly haemolytic Brachyspira species in pigs with miscellaneous chronic diseases. Vet Microbiol 134:311–317

    Article  CAS  PubMed  Google Scholar 

  • La T, Phillips ND, Hampson DJ (2016a) An investigation into the etiological agents of swine dysentery in Australian pig herds. PLoS One 11(12):e0167424

    Google Scholar 

  • La T, Rohde J, Phillips ND, Hampson DJ (2016b) Comparison of Brachyspira hyodysenteriae isolates recovered from pigs in apparently healthy multiplier herds with isolates from herds with swine dysentery. PLoS One 11(8):e0160362. 0362

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, den Bakker HC, Suzuki H, Lefébure T, Ponnala L, Sun Q, et al. (2013) Complete genome sequence of the porcine strain Brachyspira pilosicoli P43/6/78(T.). Genome Announc 1(1)

    Google Scholar 

  • Mahu M, De Pauw N, Vande Maele L, Verlinden M, Boyen F, Ducatelle R et al (2016) Variation in hemolytic activity of Brachyspira hyodysenteriae strains from pigs. Vet Res 47:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J et al (2012) Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genom 13:454

    Article  CAS  Google Scholar 

  • Matson EG, Thompson MG, Humphrey SB, Zuerner RL, Stanton TB (2005) Identification of genes of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. J Bacteriol 187:5885–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaren AJ, Trott DJ, Swayne DE, Oxberry SL, Hampson DJ (1997) Genetic and phenotypic characterization of intestinal spirochetes colonizing chickens, and allocation of known pathogenic isolates to three distinct genetic groups. J Clin Microbiol 35:412–417

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mikosza AS, Hampson DJ (2001) Human intestinal spirochetosis: Brachyspira aalborgi and/or Brachyspira pilosicoli? Anim Health Res Rev 2:101–110

    Article  CAS  PubMed  Google Scholar 

  • Mirajkar NS, Phillips ND, La T, Hampson DJ, Gebhart CJ (2016a) Characterization and recognition of Brachyspira hampsonii sp. nov., a novel intestinal spirochete that is pathogenic to pigs. J Clin Microbiol 54:2942–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirajkar NS, Johnson TJ, Gebhart CJ (2016b) Complete genome sequence of Brachyspira hyodysenteriae type strain B-78 (ATCC 27164). Genome Announc 4(4)

    Google Scholar 

  • Mirajkar NS, Johnson TJ, Gebhart CJ, Correction for Mirajkar et al. (2017) Complete genome sequence of Brachyspira hyodysenteriae type train B78 (ATCC 27164). Genome Announc 5(3)

    Google Scholar 

  • Motro Y, La T, Bellgard MI, Dunn DS, Phillips ND, Hampson DJ (2009) Identification of genes associated with prophage-like gene transfer agents in the pathogenic intestinal spirochaetes Brachyspira hyodysenteriae, Brachyspira pilosicoli and Brachyspira intermedia. Vet Microbiol 134:340–345

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq M, Zubair S, Råsbäck T, Bongcam-Rudloff E, Jansson DS (2015) Brachyspira suanatina sp. nov., an enteropathogenic intestinal spirochaete isolated from pigs and mallards: genomic and phenotypic characteristics. BMC Microbiol 15:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochiai S, Adachi Y, Mori K (1997) Unification of the genera Serpulina and Brachyspira, and proposals of Brachyspira hyodysenteriae Comb. Nov., Brachyspira innocens Comb. Nov. and Brachyspira pilosicoli Comb. Nov. Microbiol Immunol 41:445–452

    Article  CAS  PubMed  Google Scholar 

  • Page RD (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pati A, Sikorski J, Gronow S, Munk C, Lapidus A, Copeland A et al (2010) Complete genome sequence of Brachyspira murdochii type strain (56-150). Stand Genomic Sci 2:260–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips ND, La T, Amin MA, Hampson DJ (2010) Brachyspira intermedia strain diversity and relationships to other indole-positive Brachyspira species. Vet Microbiol 143:246–254

    Article  CAS  PubMed  Google Scholar 

  • Song Y, La T, Phillips ND, Bellgard MI, Hampson DJ (2009) A reverse vaccinology approach to swine dysentery vaccine development. Vet Microbiol 137:111–119

    Article  CAS  PubMed  Google Scholar 

  • Song Y, La T, Phillips ND, Hampson DJ (2015) Development of a serological ELISA using a recombinant protein to identify pig herds infected with Brachyspira hyodysenteriae. Vet J 206:365–370

    Article  PubMed  Google Scholar 

  • Stanton TB, Fournie-Amazouz E, Postic D, Trott DJ, Grimont PAD, Baranton G et al (1997) Recognition of two new species of intestinal spirochetes: Serpulina intermedia sp. nov. and Serpulina murdochii sp. nov. Int J System Bacteriol 47:1007–1012

    Article  CAS  Google Scholar 

  • Stanton TB, Postic D, Jensen NS (1998) Serpulina alvinipulli sp. nov., a new Serpulina species that is enteropathogenic for chickens. Int J Syst Bacteriol 48:669–676

    Article  CAS  PubMed  Google Scholar 

  • Stanton TB, Thompson MG, Humphrey SB, Zuerner RL (2003) Detection of bacteriophage VSH-1 svp38 gene in Brachyspira spirochetes. FEMS Microbiol Lett 224:225–229

    Article  CAS  PubMed  Google Scholar 

  • Stephens CP, Hampson DJ (1999) Prevalence and disease association of intestinal spirochaetes in chickens in eastern Australia. Avian Pathol 28:447–454

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(4673):4680

    Google Scholar 

  • Trott DJ, McLaren AJ, Hampson DJ (1995) Pathogenicity of human and porcine intestinal spirochetes in day-old specific pathogen free chicks: an animal model of intestinal spirochetosis. Infect Immun 63:3705–3710

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trott DJ, Huxtable CR, Hampson DJ (1996a) Experimental infection of newly weaned pigs with human and porcine strains of Serpulina pilosicoli. Infect Immun 64:4648–4654

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trott DJ, Stanton TB, Jensen NS, Duhamel GE, Johnson JL, Hampson DJ (1996b) Serpulina pilosicoli sp. nov., the agent of porcine intestinal spirochetosis. Int J System Bacteriol 46:206–215

    Article  CAS  Google Scholar 

  • Wanchanthuek P, Bellgard MI, La T, Ryan K, Moolhuijzen P, Chapman B et al. (2010) The complete genome sequence of the pathogenic intestinal spirochete Brachyspira pilosicoli and comparison with other Brachyspira genomes. PLoS One 6, 5(7):e11455

    Google Scholar 

  • Weissenböck H, Maderner A, Herzog AM, Lussy H, Nowotny N (2005) Amplification and sequencing of Brachyspira spp. specific portions of nox using paraffin-embedded tissue samples from clinical colitis in Austrian pigs shows frequent solitary presence of Brachyspira murdochii. Vet Microbiol 111:67–75

    Article  CAS  PubMed  Google Scholar 

  • Zuerner RL, Stanton TB, Minion FC, Li C, Charon NW, Trott DJ et al (2004) Genetic variation in Brachyspira: chromosomal rearrangements and sequence drift distinguish B. pilosicoli from B. hyodysenteriae. Anaerobe 10:229–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tom La of Murdoch University for critically reading the manuscript and Dr. Eric Burrough (Iowa State University) and Dr. Connie Gebhart (University of Minnesota) for providing genomic sequence from some of the Brachyspira strains that were included in this preliminary analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David John Hampson or Penghao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hampson, D.J., Wang, P. (2017). Colonic Spirochetes: What Has Genomics Taught Us?. In: Adler, B. (eds) Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology, vol 415. Springer, Cham. https://doi.org/10.1007/82_2017_48

Download citation

Publish with us

Policies and ethics