Skip to main content

The Treponema pallidum Outer Membrane

  • Chapter
  • First Online:
Spirochete Biology: The Post Genomic Era

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 415))

Abstract

The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum’s poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete’s immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host–pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akins DR, Purcell BK, Mitra MM, Norgard MV, Radolf JD (1993) Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun 61:1202–1210

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alderete JF, Baseman JB (1979) Surface-associated host proteins on virulent Treponema pallidum. Infect Immun 26:1048–1056

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, Cruz AR, Salazar JC, Radolf JD (2012) TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 194:2321–2333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand A, Luthra A, Edmond ME, Ledoyt M, Caimano MJ, Radolf JD (2013) The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J Bacteriol 195:2060–2071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD (2015) Bipartite topology of Treponema pallidum repeat proteins C/D and I: outer membrane insertion, trimerization, and porin function require a C-terminal β-barrel domain. J Biol Chem 290:12313–12331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora N, Schuenemann VJ, Jager G, Peltzer A, Seitz A, Herbig A, Strouhal M, Grillova L, Sanchez-Buso L, Kuhnert D, Bos KI, Davis LR, Mikalova L, Bruisten S, Komericki P, French P, Grant PR, Pando MA, Vaulet LG, Fermepin MR, Martinez A, Centurion Lara A, Giacani L, Norris SJ, Smajs D, Bosshard PP, Gonzalez-Candelas F, Nieselt K, Krause J, Bagheri HC (2016) Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2:16245

    Article  PubMed  CAS  Google Scholar 

  • Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717

    Article  PubMed  CAS  Google Scholar 

  • Bagos PG, Liakopoulos TD, Hamodrakas SJ (2004a) Finding B-barrel outer membrane proteins with a markov chain model. WSEAS Trans Biol Biomed 2:186–189

    Google Scholar 

  • Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004b) A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform 5:29

    Article  Google Scholar 

  • Bavro VN, Pietras Z, Furnham N, Perez-Cano L, Fernandez-Recio J, Pei XY, Misra R, Luisi B (2008) Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 30:114–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker PS, Akins DR, Radolf JD, Norgard MV (1994) Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli. Infect Immun 62:1381–1391

    PubMed  PubMed Central  CAS  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biovia DS (2015) Discovery studio modeling environment. San Diego, CA, USA, Dassault Systèmes

    Google Scholar 

  • Blanco DR, Reimann K, Skare J, Champion CI, Foley D, Exner MM, Hancock RE, Miller JN, Lovett MA (1994) Isolation of the outer membranes from Treponema pallidum and Treponema vincentii. J Bacteriol 176:6088–6099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanco DR, Champion CI, Exner MM, Erdjument-Bromage H, Hancock RE, Tempst P, Miller JN, Lovett MA (1995) Porin activity and sequence analysis of a 31-kilodalton Treponema pallidum subsp. pallidum rare outer membrane protein (Tromp1). J Bacteriol 177:3556–3562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  • Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, Buchanan SK (2016) Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens. Structure 24:965–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourell KW, Schulz W, Norgard MV, Radolf JD (1994) Treponema pallidum rare outer membrane proteins: analysis of mobility by freeze-fracture electron microscopy. J Bacteriol 176:1598–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV (2012) Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 420:70–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brautigam CA, Deka RK, Liu WZ, Norgard MV (2015) Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci 24:11–19

    Article  PubMed  CAS  Google Scholar 

  • Brautigam CA, Deka RK, Liu WZ, Norgard MV (2016) The Tp0684 (MglB-2) lipoprotein of Treponema pallidum: a glucose-binding protein with divergent topology. PLoS ONE 11:e0161022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brusca JS, Radolf JD (1994) Isolation of integral membrane proteins by phase partitioning with Triton X-114. Methods Enzymol 228:182–193

    Article  PubMed  CAS  Google Scholar 

  • Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181:1401–1413

    Article  PubMed  CAS  Google Scholar 

  • Cameron CE, Brouwer NL, Tisch LM, Kurowa JM (2005) Defining the interation of the Treponema pallidum adhesin TP0751 with laminin. Infect Immun 73:7485–7494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron CE (2006) The T. pallidum outer membrane and outer membrane proteins. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema: molecular and cellular biology, Caister Academic Press, Norwich, UK, pp. 237–266

    Google Scholar 

  • Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C (2006) The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett 580:4877–4883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (1999) Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med 189:647–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA (2000) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68:824–831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596

    Article  CAS  PubMed  Google Scholar 

  • Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA (2013) Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis 7:e2222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chamberlain NR, Brandt ME, Erwin AL, Radolf JD, Norgard MV (1989a) Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect Immun 57:2872–2877

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chamberlain NR, DeOgny L, Slaughter C, Radolf JD, Norgard MV (1989b) Acylation of the 47-kilodalton major membrane immunogen of Treponema pallidum determines its hydrophobicity. Infect Immun 57:2878–2885

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N (2016) Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci Rep 6:25593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christiansen S (1963) Protective layer covering pathogenic treponemata. Lancet 1:423–425

    Article  CAS  PubMed  Google Scholar 

  • Conlan S, Bayley H (2003) Folding of a monomeric porin, OmpG, in detergent solution. Biochemistry 42:9453–9465

    Article  CAS  PubMed  Google Scholar 

  • Cox DL, Chang P, McDowall AW, Radolf JD (1992) The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun 60:1076–1083

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cox DL, Akins DR, Porcella SF, Norgard MV, Radolf JD (1995) Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 15:1151–1164

    Article  CAS  PubMed  Google Scholar 

  • Cox DL, Radolf JD (2001) Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi. Microbiology 147:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC (2010) Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 4:e690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deitsch KW, Lukehart SA, Stringer JR (2009) Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7:493–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deka RK, Lee YH, Hagman KE, Shevchenko D, Lingwood CA, Hasemann CA, Norgard MV, Radolf JD (1999) Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure. J Bacteriol 181:4420–4423

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deka RK, Machius M, Norgard MV, Tomchick DR (2002) Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 277:41857–41864

    Article  CAS  PubMed  Google Scholar 

  • Deka RK, Goldberg MS, Hagman KE, Norgard MV (2004a) The Tp38 (TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. J Bacteriol 186:2303–2308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deka RK, Neil L, Hagman KE, Machius M, Tomchick DR, Brautigam CA, Norgard MV (2004b) Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an L-methionine-binding protein. J Biol Chem 279:55644–55650

    Article  CAS  PubMed  Google Scholar 

  • Deka RK, Brautigam CA, Yang XF, Blevins JS, Machius M, Tomchick DR, Norgard MV (2006) The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. J Biol Chem 281:8072–8081

    Article  CAS  PubMed  Google Scholar 

  • Deka RK, Brautigam CA, Tomson FL, Lumpkins SB, Tomchick DR, Machius M, Norgard MV (2007) Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem 282:5944–5958

    Article  CAS  PubMed  Google Scholar 

  • Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV (2012) Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 416:678–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV (2013) The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 288:11106–11121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorset DL, Engel A, Haner M, Massalski A, Rosenbusch JP (1983) Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. J Mol Biol 165:701–710

    Article  CAS  PubMed  Google Scholar 

  • Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 367:1059–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn JP, Kenedy MR, Iqbal H, Akins DR (2015) Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egli C, Leung WK, Muller KH, Hancock RE, McBride BC (1993) Pore-forming properties of the major 53-kilodalton surface antigen from the outer sheath of Treponema denticola. Infect Immun 61:1694–1699

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ellen RP (2006) Virulence determinants of oral treponemes. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema molecular and cellular biology, Norwich, UK, Caister Academic Press, pp. 357–386

    Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald TJ, Johnson RC (1979) Surface mucopolysaccharides of Treponema pallidum. Infect Immun 24:244–251

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    Article  CAS  PubMed  Google Scholar 

  • Freeman TC Jr, Wimley WC (2012) TMBB-DB: a transmembrane β-barrel proteome database. Bioinformatics 28:2425–2430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, Galdiero M (2012) Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacani L, Lukehart S, Centurion-Lara A (2007) Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 51:289–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A (2009) TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 72:1087–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA (2010) Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol 184:3822–3829

    Article  PubMed  CAS  Google Scholar 

  • Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194:4208–4225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, Ciccarese G, Drago F, Lukehart SA, Centurion-Lara A (2015) Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun 83:2275–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, Kitchen A, Lukehart SA, Centurion-Lara A (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23:2220–2233

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Stansfeld PJ, Zeng Y, Dong H, Wang W, Dong C (2015) Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure 23:496–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haake DA, Zuckert WR (2015) The leptospiral outer membrane. Curr Top Microbiol Immunol 387:187–221

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy PH Jr, Nell EE (1957) Study of the antigenic structure of Treponema pallidum by specific agglutination. Am J Hyg 66:160–172

    PubMed  Google Scholar 

  • Hazlett KR, Sellati TJ, Nguyen TT, Cox DL, Clawson ML, Caimano MJ, Radolf JD (2001) The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J Exp Med 193:1015–1026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazlett KR, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD (2005) TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 187:6499–6508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinz E, Lithgow T (2014) A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 5:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K (2007) Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure 15:963–976

    Article  CAS  PubMed  Google Scholar 

  • Ho EL, Lukehart SA (2011) Syphilis: using modern approaches to understand an old disease. J Clin Invest 121:4584–4592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong H, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded b-barrel with a hydrophobic channel. J Biol Chem 281:7568–7577

    Article  CAS  PubMed  Google Scholar 

  • Houston S, Hof R, Honeyman L, Hassler J, Cameron CE (2012) Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog 8:e1002822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houston S, Russell S, Hof R, Roberts AK, Cullen P, Irvine K, Smith DS, Borchers CH, Tonkin ML, Boulanger MJ, Cameron CE (2014) The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol Microbiol 91:618–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hovind-Hougen K (1983) Morphology. In Schell RF, Musher DM (ed) Pathogenesis and immunology of treponemal infection, Marcel Dekker, New York, pp. 3–28

    Google Scholar 

  • Iqbal H, Kenedy MR, Lybecker M, Akins DR (2016) The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol

    Google Scholar 

  • Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La Vake C, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (2009) Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191:7566–7580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson RC, Ritzi DM, Livermore BP (1973) Outer envelope of virulent Treponema pallidum. Infect Immun 8:291–295

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones JD, Bourell KW, Norgard MV, Radolf JD (1995) Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63:2424–2434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  • Ke W, Molini BJ, Lukehart SA, Giacani L (2015) Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 9:e0003662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA (2003) Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol 185:6262–6268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA (2006a) TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun 74:1896–1906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lafond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19:29–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA (2006b) Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 74:6244–6251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee YH, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nature Structural Biology 6:628–633

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J Bacteriol 184:2300–2304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Wen L, Li C, Chen R, Ye Z, Zhao J, Pan J (2016) Contribution of the outer membrane protein OmpW in Escherichia coli to complement resistance from binding to factor H. Microb Pathog 98:57–62

    Article  PubMed  CAS  Google Scholar 

  • Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S and Cameron CE (2017) A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subps. pallidum. Nat Commun 8:14272

    Google Scholar 

  • Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ (2009) Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026–5036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (2010) Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukehart SA, Miller JN (1978) Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121:2014–2024

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Shaffer JM, Baker-Zander SA (1992) A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis 166:1449–1453

    Article  PubMed  CAS  Google Scholar 

  • Lukehart SA, Marra CM (2007) Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol Chapter 12:Unit 12A 11

    Google Scholar 

  • Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD (2011) The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 286:41656–41668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luthra A, Anand A, Hawley KL, LeDoyt M, La Vake CJ, Caimano MJ, Cruz AR, Salazar JC, Radolf JD (2015a) A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J Bacteriol 197:1906–1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luthra A, Anand A, Radolf JD (2015b) Treponema pallidum in gel microdroplets: A method for topological analysis of BamA (TP0326) and localization of rare outer membrane proteins. Methods Mol Biol 1329:67–75

    Article  PubMed  CAS  Google Scholar 

  • Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV (2007) Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 373:681–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnuson HJ, Eagle H, Fleischman R (1948) The minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and a consideration of its rate of multiplication in vivo. Am J Syph Gonorrhea Vener Dis 32:1–18

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  CAS  PubMed  Google Scholar 

  • Morgan CA, Lukehart SA, Van Voorhis WC (2002a) Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun 70:6811–6816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC (2002b) Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol 169:952–957

    Article  CAS  PubMed  Google Scholar 

  • Morgan CA, Lukehart SA, Van Voorhis WC (2003) Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect Immun 71:5605–5612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myint M, Bashiri H, Harrington RD, Marra CM (2004) Relapse of secondary syphilis after benzathine penicillin G: molecular analysis. Sex Transm Dis 31:196–199

    Article  PubMed  Google Scholar 

  • Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151:2975–2986

    Article  CAS  PubMed  Google Scholar 

  • Narita S, Tokuda H (2007) Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  PubMed  Google Scholar 

  • Nelson RA Jr, Mayer MM (1949) Immobilization of Treponema pallidum in vitro by antibody produced in syphilitic infection. J Exp Med 89:369–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781

    Article  PubMed  CAS  Google Scholar 

  • Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norgard MV, Miller JN (1983) Cloning and expression of Treponema pallidum (Nichols) antigen genes in Escherichia coli. Infect Immun 42:435–445

    PubMed  PubMed Central  CAS  Google Scholar 

  • Norris SJ, Cox DL, Weinstock GM (2001) Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 3:37–62

    PubMed  CAS  Google Scholar 

  • Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14:337–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ou YY, Gromiha MM, Chen SA, Suwa M (2008) TMBETADISC-RBF: Discrimination of b-barrel membrane proteins using RBF networks and PSSM profiles. Comput Biol Chem 32:227–231

    Article  PubMed  CAS  Google Scholar 

  • Parker ML, Houston S, Petrosova H, Lithgow KV, Hof R, Wetherell C, Kao WC, Lin YP, Moriarty TJ, Ebady R, Cameron CE, Boulanger MJ (2016) The structure of Treponema pallidum Tp0751 (Pallilysin) reveals a non-canonical lipocalin fold that mediates adhesion to extracellular matrix components and interactions with host cells. PLoS Pathog 12:e1005919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penn CW, Cockayne A, Bailey MJ (1985) The outer membrane of Treponema pallidum: biological significance and biochemical properties. J Gen Microbiol 131:2349–2357

    PubMed  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Petrosova H, Zobanikova M, Cejkova D, Mikalova L, Pospisilova P, Strouhal M, Chen L, Qin X, Muzny DM, Weinstock GM, Smajs D (2012) Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis 6:e1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phan G, Picard M, Broutin I (2015) Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies. Antibiotics (Basel) 4:544–566

    Article  CAS  Google Scholar 

  • Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, Borrego MJ, Mendonca J, Carpinteiro D, Vieira L, Gomes JP (2016) Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2:16190

    Article  CAS  PubMed  Google Scholar 

  • Porcella SF, Popova TG, Hagman KE, Penn CW, Radolf JD, Norgard MV (1996) A mgl-like operon in Treponema pallidum, the syphilis spirochete. Gene 177:115–121

    Article  CAS  PubMed  Google Scholar 

  • Purcell BK, Swancutt MA, Radolf JD (1990) Lipid modification of the 15 kiloDalton major membrane immunogen of Treponema pallidum. Mol Microbiol 4:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Radolf JD, Fehniger TE, Silverblatt FJ, Miller JN, Lovett MA (1986) The surface of virulent Treponema pallidum: resistance to antibody binding in the absence of complement and surface association of recombinant antigen 4D. Infect Immun 52:579–585

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Chamberlain NR, Clausell A, Norgard MV (1988) Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent triton X-114. Infect Immun 56:490–498

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Moomaw C, Slaughter CA, Norgard MV (1989a) Penicillin-binding proteins and peptidoglycan of Treponema pallidum subsp. pallidum. Infect Immun 57:1248–1254

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Norgard MV, Schulz WW (1989b) Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A 86:2051–2055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Bourell KW, Akins DR, Brusca JS, Norgard MV (1994) Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176:21–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD (1995) Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV (1995a) Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63:2154–2163

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Robinson EJ, Bourell KW, Akins DR, Porcella SF, Weigel LM, Jones JD, Norgard MV (1995b) Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect Immun 63:4244–4252

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Lukehart SA (2006) Immunology of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp 285–322

    Google Scholar 

  • Radolf JD, Hazlett KRO, Lukehart SA (2006). Pathogenesis of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp. 197–236

    Google Scholar 

  • Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radolf JD, Tramont EC, Salazar JC (2014) Syphilis (Treponema pallidum). In Bennett JE, Dolin R, Blaser MJ (ed) Mandell, Douglas and Bennett’s principles and practice of infectious diseases, Churchill Livingtone, Elsevier, Philadelphia, pp. 2684–2709

    Google Scholar 

  • Radolf JD, Deka RK, Anand A, Smajs D, Norgard MV, Yang XF (2016) Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14:744–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24:513–520

    Article  CAS  PubMed  Google Scholar 

  • Reid TB, Molini BJ, Fernandez MC, Lukehart SA (2014) Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun 82:4959–4967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK (2015). Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 370

    Google Scholar 

  • Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194:4081–4087

    Article  PubMed  CAS  Google Scholar 

  • Selkrig J, Belousoff MJ, Headey SJ, Heinz E, Shiota T, Shen HH, Beckham SA, Bamert RS, Phan MD, Schembri MA, Wilce MC, Scanlon MJ, Strugnell RA, Lithgow T (2015) Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci rep 5:12905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sena AC, Pillay A, Cox DL, Radolf JD (2015). Treponema and Brachyspira, human host-associated spirochetes. In Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (ed) Manual of Clinical Microbiology, ASM Press, Washington, D.C, pp. 1055–1081

    Google Scholar 

  • Setubal JC, Reis M, Matsunaga J, Haake DA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121

    Article  PubMed  CAS  Google Scholar 

  • Shao L, Kinnally KW, Mannella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71:778–786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD (1997) Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 65:4179–4189

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shevchenko DV, Sellati TJ, Cox DL, Shevchenko OV, Robinson EJ, Radolf JD (1999) Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun 67:2266–2276

    PubMed  PubMed Central  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smajs D, Norris SJ, Weinstock GM (2012) Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 12:191–202

    Article  PubMed  Google Scholar 

  • Smith SG, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11

    Article  CAS  PubMed  Google Scholar 

  • Stamm LV, Bergen HL (2000) The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun 68:6482–6486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stamm LV, Folds JD, Bassford PJ Jr (1982) Expression of Treponema pallidum antigens in Escherichia coli K-12. Infect Immun 36:1238–1241

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY (1998) Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett 169:155–163

    Article  CAS  PubMed  Google Scholar 

  • Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725–737

    Article  CAS  PubMed  Google Scholar 

  • Swancutt MA, Radolf JD, Norgard MV (1990) The 34-kilodalton membrane immunogen of Treponema pallidum is a lipoprotein. Infect Immun 58:384–392

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tokunaga M, Loranger JM, Wu HC (1984) A distinct signal peptidase for prolipoprotein in Escherichia coli. J Cell Biochem 24:113–120

    Article  CAS  PubMed  Google Scholar 

  • Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner TB, Hollander DH (1957) Biology of the treponematoses. World Health Organization, Geneva

    Google Scholar 

  • van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407

    Article  CAS  PubMed  Google Scholar 

  • van den Berg B (2012) Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 287:41044–41052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg B, Black PN, Clemons WM Jr, Rapoport TA (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509

    Article  CAS  PubMed  Google Scholar 

  • Walfield AM, Hanff PA, Lovett MA (1982) Expression of Treponema pallidum antigens in Escherichia coli. Science 216:522–523

    Article  CAS  PubMed  Google Scholar 

  • Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Webb CT, Heinz E, Lithgow T (2012) Evolution of the beta-barrel assembly machinery. Trends Microbiol 20:612–620

    Article  PubMed  CAS  Google Scholar 

  • Weigel LM, Brandt ME, Norgard MV (1992) Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum. Infect Immun 60:1568–1576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weigel LM, Radolf JD, Norgard MV (1994) The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A 91:11611–11615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. struct Rev Biochem 83:99–128

    Article  CAS  Google Scholar 

  • Wimley WC (2003) The versatile β-barrel membrane protein. Curr Opin Struct Biol 13:404–411

    Article  PubMed  CAS  Google Scholar 

  • Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY (2013) Outer membrane protein OmpW of Escherichia coli is required for resistance to phagocytosis. Res Microbiol 164:848–855

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. Curr Protoc Bioinform 52:5 8 1–15

    Google Scholar 

  • Yonehara R, Yamashita E, Nakagawa A (2016) Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa. Proteins 84:759–769

    Article  PubMed  CAS  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  PubMed  CAS  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431:13–22

    Article  PubMed  CAS  Google Scholar 

  • Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Funded in part by R01 AI-26756 from the National Institutes of Health (NIAID) and the Department of Research, Connecticut Children’s Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Radolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Radolf, J.D., Kumar, S. (2017). The Treponema pallidum Outer Membrane. In: Adler, B. (eds) Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology, vol 415. Springer, Cham. https://doi.org/10.1007/82_2017_44

Download citation

Publish with us

Policies and ethics