Skip to main content

Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules

  • Chapter
  • First Online:
Uptake and Trafficking of Protein Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 406))

Abstract

A-B types of toxins are among the most potent bacterial protein toxins produced by gram-positive bacteria. Prominent examples are the tripartite anthrax toxin of Bacillus anthracis and the different A-B type clostridial toxins that are the causative agents of severe human and animal diseases and could serve as biological weapons. The components of all these toxins comprise one binding/transport (B) subunit and one or two separate, non-linked enzymatically active (A) subunits. The A and B subunits are separately produced and secreted by the pathogenic gram-positive bacteria and must assemble on the surface of eukaryotic target cells to form biologically active toxin complexes. The B components are cleaved by proteases to generate the biologically active species that binds to receptors on the surface of the target cells and form there oligomers which bind the A subunits. The AB complexes are internalized by receptor-mediated endocytosis and reach early or late endosomes that become acidified. Subsequently, the B components form channels in endosomal membranes that are indispensable for the transport of the enzymatic subunits across these membranes into the cytosol of target cells via the trans-membrane channels. In addition to the channels formed by the B components, host cell factors including chaperones and further folding helper enzymes are involved in the import of the enzymatic subunits into the cytosol of eukaryotic cells. Positively charged heterocyclic molecules, such as chloroquine and related aminoquinolinium and azolopyridinium salts have been shown in recent years to bind with high affinity to the channels formed by the B components of binary toxins. Since binding to the B components is also a prerequisite for transport of the A components across the endosomal membranes the channel blockers also prevent transport of the A subunits into the host cell cytosol. The inhibition of toxin uptake into cells by such pharmacological compounds should also be of clinically interest because the toxins are the major virulence factors causing anthrax on the one hand and severe enteric disease on the other hand. Therefore, the novel toxin inhibitors should be attractive compounds for an application in combination with antibiotics to prevent or treat the diseases associated with binary toxins. Here the different processes involved in channel block in vitro and inhibition of intoxication of living target cells are reviewed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Barth H (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90:944–950

    Article  PubMed  Google Scholar 

  • Arévalo MT, Li J, Diaz-Arévalo D, Chen Y, Navarro A, Wu L, Yan Y, Zeng M (2017) A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax. Immunology 150:276–289

    Article  PubMed  Google Scholar 

  • Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo. FASEB J. 15:1658–1660

    CAS  PubMed  Google Scholar 

  • Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R (2003) Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. J Mol Biol 333:527–540

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Aktories D, Blöcker K (2002) The uptake machinery of clostridial actin ADP-ribosylating toxins—a cell delivery system for fusion proteins and polypeptide drugs. Naunyn Schmiedebergs Arch Pharmacol 366:501–512

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, Hajós G, Barth H (2013) Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS ONE 8:e66099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R (2012) Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS ONE 7:e46964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz R, Schmid A, Nakae T, Vos-Scheperkeuter GH (1986) Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol 165:978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezrukov SM, Winterhalter M (2000) Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys Rev Lett 85:202–205

    Article  CAS  PubMed  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci U S A 93:8437–8442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A 86:2209–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein RO, Lea EJ, Finkelstein A (1990) Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis. J Gen Physiol 96:921–942

    Article  CAS  PubMed  Google Scholar 

  • Blöcker D, Bachmeyer C, Benz R, Aktories K, Barth H (2003a) Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Biochemistry 42:5368–5377

    Article  PubMed  Google Scholar 

  • Blöcker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the binary Clostridium perfringens iota toxin. Infect Immun 69:2980–2987

    Article  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003b) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367

    Article  PubMed  Google Scholar 

  • Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229

    Article  CAS  PubMed  Google Scholar 

  • Bronnhuber A, Maier E, Riedl Z, Hajós G, Benz R, Barth H (2014) Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 316:25–33

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Kaur M, Midha S, Gorantala J, Bhatnagar R (2007) Induction of cytotoxic T-lymphocyte response against Mycobacterial antigen using domain I of anthrax edema factor as antigen delivery system. Biochem Biophys Res Commun 357:50–365

    Article  CAS  PubMed  Google Scholar 

  • Chauhan V, Bhatnagar R (2002) Identification of amino acid residues of anthrax protective antigen involved in binding with lethal factor. Infect Immun 70:4477–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70

    Article  CAS  PubMed  Google Scholar 

  • Cunningham K, Lacy DB, Mogridge J, Collier RJ (2002) Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc Natl Acad Sci U S A. 99:7049–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon TC, Fadl AA, Koehler TM, Swanson JA, Hanna PC (2000) Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape. Cell Microbiol 2:453–463

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275(4):2328–2334

    Google Scholar 

  • Eigen M, Kruse W, Maass G, De Maeyer L (1964) Rate constants of protolytic reactions in aqueous solutions. Prog React Kinet 2:287–318

    Google Scholar 

  • Elliott JL, Mogridge J, Collier RJ (2000) A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39:6706–6713

    Article  CAS  PubMed  Google Scholar 

  • Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59:3381–3386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein A (1994) The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin. Toxicology 87:29–41

    Article  CAS  PubMed  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    CAS  PubMed  Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajós G, Messmer A (1984) Ambident reactivity of a thiazolo[3,2-a]pyridinium salt with nucleophiles. J Heterocyclic Chem 21:809–811

    Article  Google Scholar 

  • Halverson KM, Panchal RG, Nguyen TL, Gussio R, Little SF, Misakian M, Bavari S, Kasianowicz JJ (2005) Anthrax biosensor, protective antigen ion channel asymmetric blockade. J Biol Chem 280:34056–34062

    Article  CAS  PubMed  Google Scholar 

  • Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 90:10198–10201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003a) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274

    Article  CAS  PubMed  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003b) Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291

    Article  CAS  PubMed  Google Scholar 

  • Heine K, Pust S, Enzenmüller S, Barth H (2008) ADP-ribosylation of actin by Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521:545–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff MR, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 blocks membrane translocation of the toxin in mammalian cells. Cell Microbiol 14:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11:780–795

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Wang J, Tama F, Chollet L, Gogol EP, Collier RJ, Fisher MT (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipidnanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 107:3453–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintzer AF, Sterling HJ, Tang II, Williams ER, Krantz BA (2010) Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS ONE 5:e13888

    Article  PubMed  PubMed Central  Google Scholar 

  • Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, Zhang TT, Williams ER, Berger JM, Krantz BA (2009) The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol 392:614–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277(8):6143–6152

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, Benz R, Popoff MR (2016) Pore-forming activity of clostridial binary toxins. Biochim Biophys Acta 1858:512–525

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR (2015) Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol 17(2):288–302

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Guo Q, Yu C, Dong D, Zhao J, Cai C, Hou L, Song X, Fu L, Xu J, Chen W (2009) Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor. FEBS Lett 583:1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355:968–979

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreidler AM, Benz R, Barth H (2017) Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 91:1431–1445

    Article  CAS  PubMed  Google Scholar 

  • Kronhardt A, Beitzinger C, Barth H, Benz R (2016) Chloroquine analog interaction with C2- and Iota-Toxin in vitro and in living cells. Toxins (Basel) 8(8)

    Google Scholar 

  • Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E (2011) Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. PLoS ONE 6:e23133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy DB, Collier RJ (2002) Structure and function of anthrax toxin. Curr Top Microbiol Immunol 271:61–85

    CAS  PubMed  Google Scholar 

  • Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277:3006–3010

    Article  CAS  PubMed  Google Scholar 

  • Leppla SH, Arora N, Varughese M (1999) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 87:284

    Article  CAS  PubMed  Google Scholar 

  • Leuber M, Kronhardt A, Tonello F, Dal Molin F, Benz R (2008) Binding of N-terminal fragments of anthrax edema factor (EF(N)) and lethal factor (LF(N)) to the protective antigen pore. Biochim Biophys Acta 1778:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Menard A, Papini E, Mock M, Montecucco C (1996) The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors. Biochem J 320:687–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer A, Gelléri A, Hajós G (1986) Synthesis and nitrogen elimination of 3-aryltetrazolo[1,5-a]pyridinium salts and its angular benzologues. Tetrahedron 42:4827–4836

    Article  CAS  Google Scholar 

  • Miller CJ, Elliott JL, Collier RJ (1999) Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38:10432–10441

    Article  CAS  PubMed  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  PubMed  Google Scholar 

  • Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ (2002) The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc Natl Acad Sci U S A 99:7045–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: an extended beta-barrel. Biochemistry 41:1445–1450

    Google Scholar 

  • Nekolla S, Andersen C, Benz R (1994) Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys J 66:1388–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R (2008) Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J Biol Chem 283:3904–3914

    Article  CAS  PubMed  Google Scholar 

  • Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Benz R (2006a) Anthrax edema factor, voltage-dependent binding to the protective antigen ion channel and comparison to LF binding. J Biol Chem 281:32335–32343

    Article  CAS  PubMed  Google Scholar 

  • Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Orlik F, Benz R (2006b) Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. Biochemistry 45:3060–3068

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL (2004) Three-dimensional model of the pore form of anthrax protective antigen. Structure and biological implications. J Biomol Struct Dyn 22:253–265

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Yanagimoto A (1992) Visualizations of binding and internalization of two nonlinked protein components of botulinum C2 toxin in tissue culture cells. Infect Immun 60:4648–4655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlik F, Schiffler B, Benz R (2005) Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis. Biophys J 88:1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Palkó R, Riedl Z, Egyed O, Fábián L, Hajós G (2006) New facile tandem route to oxo- and thioxo[1,2,4]triazolo[1,5-a]pyridinium salts. J Org Chem 71:7805–7812

    Article  PubMed  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233

    Article  CAS  PubMed  Google Scholar 

  • Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 462:199–204

    Article  CAS  PubMed  Google Scholar 

  • Perelle S, Domenighini M, Popoff MR (1996) Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin. FEBS Lett 395:191–194

    Article  CAS  PubMed  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Quispe J, Leppla SH, Mitra AK (2004) Large-scale structural changes accompany binding of lethal factor to anthrax protective antigen: a cryo-electron microscopic study. Structure 12:2059–2066

    Article  CAS  PubMed  Google Scholar 

  • Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J Biol Chem 269:16706–16711

    CAS  PubMed  Google Scholar 

  • Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100:5170–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellman BR, Nassi S, Collier RJ (2001) Point mutations in anthrax protective antigen that block translocation. J Biol Chem 276:8371–8376

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Google Scholar 

  • Stiles BG, Wilkins TD (1986a) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wilkins TD (1986b) Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24:767–773

    Article  CAS  PubMed  Google Scholar 

  • Timári G, Hajós G, Messmer A (1990) Alkylation and ring opening of two differently fused pyridoquinazolones. J Heterocycl Chem 27:2005–2009

    Article  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic beta/gamma-actin in arginine 177. J Biol Chem 263:696–700

    CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    CAS  PubMed  Google Scholar 

  • Wohnsland F, Benz R (1997) 1/f-Noise of open bacterial porin channels. J Membr Biol 158:77–85

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

  • Young JJ, Bromberg-White JL, Zylstra C, Church JT, Boguslawski E, Resau JH, Williams BO, Duesbery NS (2007) LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin. PLoS Pathog 3:e27

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Finkelstein A, Collier RJ (2004a) Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci USA 101:16756–16761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A (2004b) Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Biophys J 87:3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Benz or Holger Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Benz, R., Barth, H. (2017). Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. In: Barth, H. (eds) Uptake and Trafficking of Protein Toxins. Current Topics in Microbiology and Immunology, vol 406. Springer, Cham. https://doi.org/10.1007/82_2017_17

Download citation

Publish with us

Policies and ethics