Skip to main content

Filovirus Strategies to Escape Antiviral Responses

  • Chapter
  • First Online:
Marburg- and Ebolaviruses

Abstract

This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  • Alazard-Dany N et al (2006) Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol 87(Pt 5):1247–1257

    Article  CAS  PubMed  Google Scholar 

  • Alber D, Staeheli P (1996) Partial inhibition of vesicular stomatitis virus by the interferon-induced human 9-27 protein. J Interferon Cytokine Res 16(5):375–380

    Article  CAS  PubMed  Google Scholar 

  • Alves DA et al (2010) Aerosol exposure to the Angola strain of Marburg virus causes lethal viral hemorrhagic fever in cynomolgus macaques. Vet Pathol 47(5):831–851

    Article  CAS  PubMed  Google Scholar 

  • Anafu AA et al (2013) Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J Biol Chem 288(24):17261–17271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayithan N et al (2014) Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways. J Interferon Cytokine Res 34(2):79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey CC et al (2014) IFITM-family proteins: the cell’s first line of antiviral defense. Annu Rev Virol 1:261–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baize S et al (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5(4):423–426

    Article  CAS  PubMed  Google Scholar 

  • Baize S et al (2002) Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 128(1):163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrientos LG, Rollin PE (2007) Release of cellular proteases into the acidic extracellular milieu exacerbates Ebola virus-induced cell damage. Virology 358(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Baskerville A et al (1978) The pathology of experimental Ebola virus infection in monkeys. J Pathol 125(3):131–138

    Article  CAS  PubMed  Google Scholar 

  • Basler CF, Amarasinghe GK (2009) Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res 29(9):511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker S et al (1998) Interactions of Marburg virus nucleocapsid proteins. Virol 249(2):406–417

    Article  CAS  Google Scholar 

  • Berke IC, Modis Y (2012) MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 31(7):1714–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bick MJ et al (2003) Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77(21):11555–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird BH et al (2016) Humanized mouse model of Ebola virus disease mimics the immune responses in human disease. J Infect Dis 213(5):703–711

    Article  PubMed  Google Scholar 

  • Bjorndal AS, Szekely L, Elgh F (2003) Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML) protein in cultured cells. BMC Microbiol 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehmann Y et al (2005) A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology 332(1):406–417

    Article  CAS  PubMed  Google Scholar 

  • Bosio CM et al (2003) Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188(11):1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Bosio CM et al (2004) Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 326(2):280–287

    Article  CAS  PubMed  Google Scholar 

  • Bradfute SB et al (2007) Lymphocyte death in a mouse model of Ebola virus infection. J Infect Dis 196(Suppl 2):S296–S304

    Article  PubMed  Google Scholar 

  • Bradfute SB, Warfield KL, Bavari S (2008) Functional CD8 + T cell responses in lethal Ebola virus infection. J Immunol 180(6):4058–4066

    Article  CAS  PubMed  Google Scholar 

  • Bradfute SB et al (2010) Mechanisms and consequences of ebolavirus-induced lymphocyte apoptosis. J Immunol 184(1):327–335

    Article  CAS  PubMed  Google Scholar 

  • Brannan JM et al (2015) Interferon alpha/beta receptor-deficient mice as a model for ebola virus disease. J Infect Dis 212(Suppl 2):S282–S294

    Article  PubMed  Google Scholar 

  • Brass AL et al (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139(7):1243–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray M, Geisbert TW (2005) Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol 37(8):1560–1566

    Article  CAS  PubMed  Google Scholar 

  • Bray M et al (2001) Haematological, biochemical and coagulation changes in mice, guinea-pigs and monkeys infected with a mouse-adapted variant of Ebola Zaire virus. J Comp Pathol 125(4):243–253

    Article  CAS  PubMed  Google Scholar 

  • Bujnicki JM, Rychlewski L (2002) In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng 15(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Caballero IS et al (2014) Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection. BMC Genom 15:960

    Article  CAS  Google Scholar 

  • Caballero IS et al (2016) In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genom 17:707

    Article  CAS  Google Scholar 

  • Chan SY, Ma MC, Goldsmith MA (2000) Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol 81(Pt 9):2155–2159

    Article  CAS  PubMed  Google Scholar 

  • Chelbi-Alix MK et al (1995) Induction of the PML protein by interferons in normal and APL cells. Leukemia 9(12):2027–2033

    CAS  PubMed  Google Scholar 

  • Chelbi-Alix MK et al (1998) Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 72(2):1043–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11(6):703–715

    Article  CAS  PubMed  Google Scholar 

  • Chow KT, Gale M Jr (2015) Snapshot: interferon signaling. Cell 163:1808

    Google Scholar 

  • Connolly BM et al (1999) Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis 179(Suppl 1):S203–S217

    Article  PubMed  Google Scholar 

  • Connor JH et al (2015) Transcriptional profiling of the immune response to Marburg virus infection. J Virol 89(19):9865–9874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13(3):310–319

    Article  CAS  PubMed  Google Scholar 

  • Conti E, Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Struct 8(3):329–338

    Article  CAS  Google Scholar 

  • Conti E et al (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Copple IM et al (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246(1):24–33

    Article  CAS  PubMed  Google Scholar 

  • Cross RW et al (2015) Modeling the disease course of Zaire ebolavirus Infection in the outbred Guinea Pig. J Infect Dis 212(Suppl 2):S305–S315

    Article  PubMed  Google Scholar 

  • Daffis S et al (2010) 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468(7322):452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauber B, Wolff T (2009) Activation of the antiviral kinase PKR and viral countermeasures. Viruses 1(3):523–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond MS, Farzan M (2013) The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 13(1):46–57

    Article  CAS  PubMed  Google Scholar 

  • Dolnik O et al (2004) Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23(10):2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolnik O et al (2015) Shedding of Ebola virus surface glycoprotein is a mechanism of self-regulation of cellular cytotoxicity and has a direct effect on virus infectivity. J Infect Dis 212(Suppl 2):S322–S328

    Article  PubMed  Google Scholar 

  • Dube D et al (2008) Cell adhesion promotes Ebola virus envelope glycoprotein-mediated binding and infection. J Virol 82(14):7238–7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara H et al (2011) Host response dynamics following lethal infection of rhesus macaques with Zaire ebolavirus. J Infect Dis 204(Suppl 3):S991–S999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara H et al (2013) A Syrian golden hamster model recapitulating ebola hemorrhagic fever. J Infect Dis 207(2):306–318

    Article  CAS  PubMed  Google Scholar 

  • Edwards MR, Basler CF (2015) Marburg virus VP24 protein relieves suppression of the NF-kappaB pathway through interaction with kelch-like ECH-associated protein 1. J Infect Dis 212(Suppl 2):S154–S159

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards MR et al (2016) Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep 14(7):1632–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis DS et al (1978) Ultrastructure of Ebola virus particles in human liver. J Clin Pathol 31(3):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escudero-Perez B et al (2014) Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 10(11):e1004509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89(6–7):819–830

    Article  CAS  PubMed  Google Scholar 

  • Everitt AR et al (2013) Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model. PLoS ONE 8(11):e80723

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabozzi G et al (2011) Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J Virol 85(6):2512–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feagins AR, Basler CF (2014) The VP40 protein of Marburg virus exhibits impaired budding and increased sensitivity to human tetherin following mouse adaptation. J Virol 88(24):14440–14450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feagins AR, Basler CF (2015) Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells. Virol 485:145–152

    Article  CAS  Google Scholar 

  • Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377(9768):849–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldmann H et al (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70(4):2208–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z et al (2007) The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol 81(1):182–192

    Article  CAS  PubMed  Google Scholar 

  • Fensterl V, Sen GC (2011) The ISG56/IFIT1 gene family. J Interferon Cytokine Res 31(1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fensterl V, Sen GC (2015) Interferon-induced Ifit proteins: their role in viral pathogenesis. J Virol 89(5):2462–2468

    Article  PubMed  CAS  Google Scholar 

  • Fernando L et al (2015) Immune response to Marburg virus angola infection in nonhuman primates. J Infect Dis 212(Suppl 2):S234–S241

    Article  PubMed  Google Scholar 

  • Ferron F et al (2002) Viral RNA-polymerases––a predicted 2′-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27(5):222–224

    Article  CAS  PubMed  Google Scholar 

  • Francica JR, Matukonis MK, Bates P (2009) Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein. Virology 383(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Fritz EA et al (2008) Cellular immune response to Marburg virus infection in cynomolgus macaques. Viral Immunol 21(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297(5587):1703–1706

    Article  CAS  PubMed  Google Scholar 

  • Garcia MA et al (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70(4):1032–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MA, Meurs EF, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89(6–7):799–811

    Article  CAS  PubMed  Google Scholar 

  • Gedigk P, Bechtelsheimer H, Korb G (1968) Pathological anatomy of the “Marburg virus” disease (the so-called “Marburg monkey disease”). Dtsch Med Wochenschr 93(12):590–601

    Article  CAS  PubMed  Google Scholar 

  • Geisbert TW et al (2000) Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest 80(2):171–186

    Article  CAS  PubMed  Google Scholar 

  • Geisbert TW et al (2003a) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163(6):2347–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisbert TW et al (2003b) Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163(6):2371–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisbert TW et al (2003c) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958

    Article  CAS  PubMed  Google Scholar 

  • Geisbert TW et al (2007) Marburg virus Angola infection of rhesus macaques: pathogenesis and treatment with recombinant nematode anticoagulant protein c2. J Infect Dis 196(Suppl 2):S372–S381

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy MC, Chelbi-Alix MK (2011) Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 31(1):145–158

    Article  CAS  PubMed  Google Scholar 

  • Gerlier D, Lyles DS (2011) Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 75(3):468–490, (second page of table of contents)

    Google Scholar 

  • Gibb TR et al (2001) Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 125(4):233–242

    Article  CAS  PubMed  Google Scholar 

  • Groseth A et al (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8(8):e1002847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guito JC et al (2016) Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virol 501:147–165

    Article  CAS  Google Scholar 

  • Guo X et al (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104(1):151–156

    Article  CAS  PubMed  Google Scholar 

  • Gupta M et al (2001) Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Spiropoulou C, Rollin PE (2007) Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology 364(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Gupta M et al (2010) Reduced virus replication, proinflammatory cytokine production, and delayed macrophage cell death in human PBMCs infected with the newly discovered Bundibugyo ebolavirus relative to Zaire ebolavirus. Virology 402(1):203–208

    Article  CAS  PubMed  Google Scholar 

  • Haasnoot J, Berkhout B (2011) RNAi and cellular miRNAs in infections by mammalian viruses. Methods Mol Biol 721:23–41

    Article  CAS  PubMed  Google Scholar 

  • Haasnoot J et al (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3(6):e86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hacke M et al (2015) Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol. Nat Commun 6:7688

    Article  PubMed  Google Scholar 

  • Haller O et al (2015) Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 23(3):154–163

    Article  CAS  PubMed  Google Scholar 

  • Han Z et al (2007) Permeabilization of the plasma membrane by Ebola virus GP2. Virus Genes 34(3):273–281

    Article  CAS  PubMed  Google Scholar 

  • Hartlieb B, Weissenhorn W (2006) Filovirus assembly and budding. Virology 344(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Hartman AL et al (2008) Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82(11):5348–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley LE et al (2002) Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 80(3):169–179

    Article  CAS  PubMed  Google Scholar 

  • Hensley LE et al (2011) Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 204(Suppl 3):S1021–S1031

    Article  CAS  PubMed  Google Scholar 

  • Herbert AS et al (2015) Niemann-pick C1 is essential for ebolavirus replication and pathogenesis in vivo. MBio 6(3):e00565-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiscott J (2007) Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18(5–6):483–490

    Article  CAS  PubMed  Google Scholar 

  • Hoenen T et al (2013) A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res 99(3):207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann HH, Schneider WM, Rice CM (2015) Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 36(3):124–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang IC et al (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog 7(1):e1001258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson KL, Rollin PE (2007) Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S357–S363

    Article  CAS  PubMed  Google Scholar 

  • Hyde JL, Diamond MS (2015) Innate immune restriction and antagonism of viral RNA lacking 2-O methylation. Virology 479–480:66–74

    Article  PubMed  CAS  Google Scholar 

  • Ignat’ev GM et al (1995) Mechanisms of protective immune response in models of Marburg fever in monkeys. Vopr Virusol 40(3):109–113

    PubMed  Google Scholar 

  • Ignatiev GM et al (2000) Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol Lett 71(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14(1):36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura T et al (2001) PACT, a double-stranded RNA binding protein acts as a positive regulator for type I interferon gene induced by Newcastle disease virus. Biochem Biophys Res Commun 282(2):515–523

    Article  CAS  PubMed  Google Scholar 

  • Jin H et al (2010) The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. J Gen Virol 91(Pt 2):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin G, Gao Y, Lin HK (2014) Cytoplasmic PML: from molecular regulation to biological functions. J Cell Biochem 115(5):812–818

    Article  CAS  PubMed  Google Scholar 

  • Johnson B et al (2016) Dimerization controls Marburg virus VP24-dependent modulation of host antioxidative stress responses. J Mol Biol 428(17):3483–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaletsky RL et al (2009) Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106(8):2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T et al (2013) Ifit1 inhibits Japanese encephalitis virus replication through binding to 5′ capped 2′-O unmethylated RNA. J Virol 87(18):9997–10003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok KH et al (2011) The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 9(4):299–309

    Article  CAS  PubMed  Google Scholar 

  • Kreuels B et al (2014) A case of severe Ebola virus infection complicated by gram-negative septicemia. N Engl J Med 371(25):2394–2401

    Article  CAS  PubMed  Google Scholar 

  • Kuhl A et al (2011) The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J Infect Dis 204(Suppl 3):S850–S860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P et al (2014) Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ppp- mRNAs. Nucleic Acids Res 42(5):3228–3245

    Article  CAS  PubMed  Google Scholar 

  • Labbe K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15(9):1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Lanzavecchia A (1999) Dendritic cell maturation and generation of immune responses. Haematologica 84(Suppl EHA-4):23–25

    Google Scholar 

  • Lavau C et al (1995) The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11(5):871–876

    CAS  PubMed  Google Scholar 

  • Le Sage V et al (2016) Ebola virus VP35 blocks stress granule assembly. Virol 502:73–83

    Article  CAS  Google Scholar 

  • Leroy EM et al (2000) Human asymptomatic Ebola infection and strong inflammatory response. Lancet 355(9222):2210–2215

    Article  CAS  PubMed  Google Scholar 

  • Leroy EM et al (2001) Early immune responses accompanying human asymptomatic Ebola infections. Clin Exp Immunol 124(3):453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DW et al (2009) Structure of the Ebola VP35 interferon inhibitory domain. Proc Natl Acad Sci U S A 106(2):411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DW et al (2010) Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17(2):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LW et al (2011a) Ebolavirus VP35 suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunol Cell Biol 89(7):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LW et al (2011b) Ebola virus failure to stimulate plasmacytoid dendritic cell interferon responses correlates with impaired cellular entry. J Infect Dis 204(Suppl 3):S973–S977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DW, Basler CF, Amarasinghe GK (2012) Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol 20(3):139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lever MS et al (2012) Lethality and pathogenesis of airborne infection with filoviruses in A129 alpha/beta-/-interferon receptor-deficient mice. J Med Microbiol 61(Pt 1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2009) Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch Biochem Biophys 488(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Li SH et al (2013) Rational design of a flavivirus vaccine by abolishing viral RNA 2′-O methylation. J Virol 87(10):5812–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2016) Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2:16250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KL et al (2015) Temporal characterization of Marburg virus Angola infection following aerosol challenge in Rhesus Macaques. J Virol 89(19):9875–9885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez LA et al (2010) Ebola virus glycoprotein counteracts BST-2/Tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J Virol 84(14):7243–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J et al (2011) The IFITM proteins inhibit HIV-1 infection. J Virol 85(5):2126–2137

    Article  CAS  PubMed  Google Scholar 

  • Lubaki NM et al (2013) The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 87(13):7471–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubaki NM et al (2016) The Ebola interferon inhibiting domains attenuate and dysregulate cell-mediated immune responses. PLoS Pathog 12(12):e1006031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludtke A et al (2015) Ebola virus disease in mice with transplanted human hematopoietic stem cells. J Virol 89(8):4700–4704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luthra P et al (2013) Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 14(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Mahanty S, Bray M (2004) Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 4(8):487–498

    Article  CAS  PubMed  Google Scholar 

  • Mahanty S et al (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170(6):2797–2801

    Article  CAS  PubMed  Google Scholar 

  • Malakhova OA, Zhang DE (2008) ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 283(14):8783–8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao R et al (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9(7):e1003494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez O, Valmas C, Basler CF (2007) Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 364(2):342–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez O, Leung LW, Basler CF (2012) The role of antigen-presenting cells in filoviral hemorrhagic fever: gaps in current knowledge. Antiviral Res 93(3):416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez O et al (2013) Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol 87(7):3801–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins K et al (2015) Characterization of clinical and immunological parameters during Ebola virus infection of rhesus macaques. Viral Immunol 28(1):32–41

    Article  PubMed  CAS  Google Scholar 

  • Marzi A et al (2013) Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates. Proc Natl Acad Sci U S A 110(5):1893–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzi A et al (2015) Delayed disease progression in Cynomolgus macaques infected with Ebola virus Makona strain. Emerg Infect Dis 21(10):1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzi A et al (2016) A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Sci Rep 6:39214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride KM et al (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 21(7):1754–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy AK et al (2014a) Ebola hemorrhagic fever: novel biomarker correlates of clinical outcome. J Infect Dis 210(4):558–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy AK et al (2014b) Biomarker correlates of survival in pediatric patients with Ebola virus disease. Emerg Infect Dis 20(10):1683–1690

    Article  PubMed  PubMed Central  Google Scholar 

  • McElroy AK et al (2016) Kinetic analysis of biomarkers in a cohort of US patients with Ebola virus disease. Clin Infect Dis 63(4):460–467

    Article  PubMed  PubMed Central  Google Scholar 

  • Melito PL et al (2008) The creation of stable cell lines expressing Ebola virus glycoproteins and the matrix protein VP40 and generating Ebola virus-like particles utilizing an ecdysone inducible mammalian expression system. J Virol Methods 148(1–2):237–243

    Article  CAS  PubMed  Google Scholar 

  • Mudhasani R et al (2013) IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift Valley fever virus. J Virol 87(15):8451–8464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S et al (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81(5):2391–2400

    Article  PubMed  CAS  Google Scholar 

  • Murphy FA et al (1971) Marburg virus infection in monkeys. Ultrastructural studies. Lab Invest 24(4):279–291

    CAS  PubMed  Google Scholar 

  • Nanduri S et al (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J 17(18):5458–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430

    Article  CAS  PubMed  Google Scholar 

  • Nelson EV et al (2016) Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol 90(16):7268–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyori O et al (2013) Suppression of Fas-mediated apoptosis via steric shielding by filovirus glycoproteins. Biochem Biophys Res Commun 441(4):994–998

    Article  CAS  PubMed  Google Scholar 

  • Okumura A, Pitha PM, Harty RN (2008) ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A 105(10):3974–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura A et al (2010) Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Okumura A et al (2015) Suppressor of cytokine signaling 3 is an inducible host factor that regulates virus egress during Ebola virus infection. J Virol 89(20):10399–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olejnik J et al (2011) Intracellular events and cell fate in filovirus infection. Viruses 3(8):1501–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olejnik J et al (2013) Ebola virus does not block apoptotic signaling pathways. J Virol 87(10):5384–5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olejnik J et al (2017) Ebolaviruses associated with differential pathogenicity induce distinct host responses in human macrophages. J Virol, (in press)

    Google Scholar 

  • O’Shea JJ et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozato K et al (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page A et al (2014) Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 6(6):1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Peisley A et al (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108(52):21010–21015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichlmair A et al (2011) IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat Immunol 12(7):624–630

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A et al (2012) Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487(7408):486–490

    Article  CAS  PubMed  Google Scholar 

  • Pinto AK et al (2015) Human and Murine IFIT1 proteins do not restrict infection of negative-sense rna viruses of the orthomyxoviridae, bunyaviridae, and filoviridae families. J Virol 89(18):9465–9476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins KC, Cardenas WB, Basler CF (2009) Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 83(7):3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins KC et al (2010a) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins KC et al (2010b) Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function. J Virol 84(20):10581–10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X et al (2014) Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus. J Virol 88(21):12703–12714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radoshitzky SR et al (2010) Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol 84(20):10569–10580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanan P et al (2012) Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proc Natl Acad Sci U S A 109(50):20661–20666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Ray RB et al (2004) Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology 321(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Rebouillat D, Hovanessian AG (1999) The human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interferon Cytokine Res 19(4):295–308

    Article  CAS  PubMed  Google Scholar 

  • Reed DS et al (2004) Depletion of peripheral blood T lymphocytes and NK cells during the course of ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol 17(3):390–400

    Article  CAS  PubMed  Google Scholar 

  • Regad T, Chelbi-Alix MK (2001) Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20(49):7274–7286

    Article  CAS  PubMed  Google Scholar 

  • Reid SP et al (2006) Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid SP et al (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81(24):13469–13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhein BA et al (2015) Interferon-gamma inhibits Ebola virus infection. PLoS Pathog 11(11):e1005263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rippey JJ, Schepers NJ, Gear JH (1984) The pathology of Marburg virus disease. S Afr Med J 66(2):50–54

    CAS  PubMed  Google Scholar 

  • Rougeron V et al (2015) Ebola and Marburg haemorrhagic fever. J Clin Virol 64:111–119

    Article  CAS  PubMed  Google Scholar 

  • Rubins KH et al (2007) The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever. Genome Biol 8(8):R174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruibal P et al (2016) Unique human immune signature of Ebola virus disease in Guinea. Nature 533(7601):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryabchikova E, Price BBS (2004) Ebola and Marburg viruses: a view of infection using electron microscopy. Columbus, Ohio, USA: Battelle Press

    Google Scholar 

  • Ryabchikova E et al (1996a) Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch Virol 141(5):909–921

    Article  CAS  PubMed  Google Scholar 

  • Ryabchikova E et al (1996b) Respiratory Marburg virus infection in guinea pigs. Arch Virol 141(11):2177–2190

    Article  CAS  PubMed  Google Scholar 

  • Ryabchikova EI, Kolesnikova LV, Luchko SV (1999) An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 179(Suppl 1):S199–S202

    Article  PubMed  Google Scholar 

  • Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma T et al (2009) Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83(5):2382–2385

    Article  CAS  PubMed  Google Scholar 

  • Sanchez A et al (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78(19):10370–10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee M et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immun 31(1):25–34

    Article  CAS  Google Scholar 

  • Schmidt A et al (2009) 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106(29):12067–12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt KM et al (2011) Recombinant Marburg virus expressing EGFP allows rapid screening of virus growth and real-time visualization of virus spread. J Infect Dis 204(Suppl 3):S861–S870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schümann M, Gantke T, Mühlberger E (2009) Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. J Virol 83(17):8993–8997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz TM, et al (2016) VP24-karyopherin alpha binding affinities differ between Ebolavirus species influencing interferon inhibition and VP24 stability. J Virol

    Google Scholar 

  • Sekimoto T et al (1997) Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J 16(23):7067–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons G et al (2002) Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76(5):2518–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroher U et al (2001) Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75(22):11025–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan NJ et al (2005) Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J Virol 79(1):547–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q et al (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immun 24(5):633–642

    Article  CAS  Google Scholar 

  • Szretter KJ et al (2012) 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog 8(5):e1002698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada A et al (2000) Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Thi EP et al (2015) Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521(7552):362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23(10):1151–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valmas C et al (2010) Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 6(1):e1000721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Paassen J et al (2012) Acute liver failure, multiorgan failure, cerebral oedema, and activation of proangiogenic and antiangiogenic factors in a case of Marburg haemorrhagic fever. Lancet Infect Dis 12(8):635–642

    Article  PubMed  Google Scholar 

  • Vasselon T et al (2013) RNAi and retroviruses: are they in RISC? Biomol Concepts 4(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Villinger F et al (1999) Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1):S188–S191

    Article  CAS  PubMed  Google Scholar 

  • Vladimer GI, Gorna MW, Superti-Furga G (2014) IFITs: emerging roles as key anti-viral proteins. Front Immunol 5:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volchkov VE et al (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291(5510):1965–1969

    Article  CAS  PubMed  Google Scholar 

  • Volchkova VA et al (2015) RNA editing of the GP gene of Ebola virus is an important pathogenicity factor. J Infect Dis 212(Suppl 2):S226–S233

    Article  PubMed  Google Scholar 

  • Wahl-Jensen V et al (2005) Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 79(4):2413–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl-Jensen V et al (2011) Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl Trop Dis 5(10):e1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warfield KL et al (2007) Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virol J 4:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Warfield KL et al (2009) Development and characterization of a mouse model for Marburg hemorrhagic fever. J Virol 83(13):6404–6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren TK et al (2010) Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother 54(5):2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wauquier N et al (2010) Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl Trop Dis 4(10)

    Google Scholar 

  • Wolf T et al (2015) Severe Ebola virus disease with vascular leakage and multiorgan failure: treatment of a patient in intensive care. Lancet 385(9976):1428–1435

    Article  PubMed  Google Scholar 

  • Wrensch F et al (2015) Interferon-induced transmembrane protein-mediated inhibition of host cell entry of Ebolaviruses. J Infect Dis 212(Suppl 2):S210–S218

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W et al (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan N, Chen ZJ (2012) Intrinsic antiviral immunity. Nat Immunol 13(3):214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZY et al (2000) Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 6(8):886–889

    Article  CAS  PubMed  Google Scholar 

  • Ye L et al (2006) Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 351(2):260–270

    Article  CAS  PubMed  Google Scholar 

  • Yen BC, Basler CF (2016) Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection. J Virol 90(10):5108–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen JY et al (2011) Therapeutics of Ebola hemorrhagic fever: whole-genome transcriptional analysis of successful disease mitigation. J Infect Dis 204(Suppl 3):S1043–S1052

    Article  CAS  PubMed  Google Scholar 

  • Yen B et al (2014) Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 88(21):12500–12510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoneyama M et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa A, Cavrois M, Greene WC (2005) Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J Virol 79(2):918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young DF et al (2016) Human IFIT1 inhibits mRNA translation of rubulaviruses but not other members of the Paramyxoviridae family. J Virol

    Google Scholar 

  • Zaki SR et al (1999) A novel immunohistochemical assay for the detection of Ebola virus in skin: implications for diagnosis, spread, and surveillance of Ebola hemorrhagic fever. Commission de Lutte contre les Epidemies a Kikwit. J Infect Dis 179(Suppl 1):S36–47

    Google Scholar 

  • Zhang AP et al (2014) Crystal structure of Marburg virus VP24. J Virol

    Google Scholar 

  • Zampieri CA et al (2007) The ERK mitogen-activated protein kinase pathway contributes to Ebola virus glycoprotein-induced cytotoxicity. J Virol 81(3):1230–1240

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 31(1):119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z et al (2016a) Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology. BMC Bioinform 17:90

    Article  CAS  Google Scholar 

  • Zhao D et al (2016b) The Myeloid LSECtin is a DAP12-coupled receptor that is crucial for inflammatory response induced by Ebola virus glycoprotein. PLoS Pathog 12(3):e1005487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y et al (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci U S A 108(38):15834–15839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumbrun EE et al (2012) Development of a murine model for aerosolized ebolavirus infection using a panel of recombinant inbred mice. Viruses 4(12):3468–3493

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Mühlberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Olejnik, J., Hume, A.J., Leung, D.W., Amarasinghe, G.K., Basler, C.F., Mühlberger, E. (2017). Filovirus Strategies to Escape Antiviral Responses. In: Mühlberger, E., Hensley, L., Towner, J. (eds) Marburg- and Ebolaviruses. Current Topics in Microbiology and Immunology, vol 411. Springer, Cham. https://doi.org/10.1007/82_2017_13

Download citation

Publish with us

Policies and ethics