Skip to main content

Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria

  • Chapter
  • First Online:
Book cover The Molecular Biology of Photorhabdus Bacteria

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 402))

Abstract

Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode–bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altincicek B, Stötzel S, Wygrecka M et al (2008) Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol 181:2705–2712

    Article  CAS  PubMed  Google Scholar 

  • Amoyel M, Anderson AM, Bach EA (2014) JAK/STAT pathway dysregulation in tumors: a Drosophila perspective. Semin Cell Dev Biol 28:96–103

    Article  CAS  PubMed  Google Scholar 

  • Arefin C, Kucerova L, Dobes P et al (2014) Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun 6:192–204

    Article  CAS  PubMed  Google Scholar 

  • Armer CA, Rao S, Berry RE (2004) Insect cellular and chemical limitations to pathogen development: the Colorado potato beetle, the nematode Heterorhabditis marelatus, and its symbiotic bacteria. J Invertebr Pathol 87:114–122

    Article  CAS  PubMed  Google Scholar 

  • Au C, Dean P, Reynolds SE et al (2004) Effect of the insect pathogenic bacterium Photorhabdus on insect phagocytes. Cell Microbiol 6:89–95

    Article  CAS  PubMed  Google Scholar 

  • Aymeric JL, Givaudan A, Duvic B (2010) Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Mol Immunol 47:2342–2348

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Adams BJ, Ciche TA et al (2013) A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS ONE 8:e69618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian N, Simões N (2013) Cloning and molecular analysis of the aspartic protease Sc-ASP110 gene transcript in Steinernema carpocapsae. Parasitology 140:1158–1167

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian N, Hao YJ, Toubarro D et al (2009) Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39:975–984

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian N, Toubarro D, Simões N (2010) Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae. Parasite Immunol 32:165–175

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian N, Nascimento G, Ferreira R et al (2012a) Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Gene 500:164–171

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian N, Toubarro D, Nascimento G et al (2012b) Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol Biochem Parasitol 182:37–44

    Article  CAS  PubMed  Google Scholar 

  • Baxt LA, Garza-Mayers AC, Goldberg MB (2013) Bacterial subversion of host innate immune pathways. Science 340:697–701

    Article  CAS  PubMed  Google Scholar 

  • Binda-Rossetti S, Mastore M, Protasoni M et al (2016) Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. J Invertebr Pathol 133:110–119

    Article  CAS  PubMed  Google Scholar 

  • Bisch G, Pagès S, McMullen JG 2nd et al (2015) Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. J Invertebr Pathol 124:15–22

    Article  CAS  PubMed  Google Scholar 

  • Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    Article  CAS  PubMed  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, Wallingford, pp 35–56

    Chapter  Google Scholar 

  • Bowen DJ, Rocheleau TA, Grutzmacher CK et al (2003) Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Microbiology 149:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Brillard J, Ribeiro C, Boemare N et al (2001) Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl Environ Microbiol 67:2515–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brivio MF, Pagani M, Restelli S (2002) Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle. Exp Parasitol 101:149–156

    Article  CAS  PubMed  Google Scholar 

  • Brivio MF, Mastore M, Moro M (2004) The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions. Mol Biochem Parasitol 135:111–121

    Article  CAS  PubMed  Google Scholar 

  • Brivio MF, Mastore M, Pagani M (2005) Parasite-host relationship: a lesson from a professional killer. Invertebr Surv J 2:41–53

    Google Scholar 

  • Brivio MF, Moro M, Mastore M (2006) Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae). Dev Comp Immunol 30:627–638

    Article  CAS  Google Scholar 

  • Brivio MF, Mastore M, Nappi AJ (2010) A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev Comp Immunol 34:991–998

    Article  CAS  PubMed  Google Scholar 

  • Brugirard-Ricaud K, Duchaud E, Givaudan A et al (2005) Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol 7:363–371

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster–from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810

    Article  CAS  PubMed  Google Scholar 

  • Cabral CM, Cherqui A, Pereira A et al (2004) Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Appl Environ Microbiol 70:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JF, Gaugler R (1993) Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behavior 126:155–169

    Article  Google Scholar 

  • Casanova-Torres ÁM, Goodrich-Blair H (2013) Immune signaling and antimicrobial peptide expression in Lepidoptera. Insects 4(3):320–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Castagnola A, Stock SP (2014) Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 5:139–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo JC, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27:537–547

    Article  CAS  PubMed  Google Scholar 

  • Castillo JC, Shokal U, Eleftherianos I (2012) A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence 3:339–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo JC, Shokal U, Eleftherianos I (2013) Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. J Insect Physiol 59:179–185

    Article  CAS  PubMed  Google Scholar 

  • Castillo JC, Creasy T, Kumari P et al (2015) Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. BMC Genom 16:519

    Article  CAS  Google Scholar 

  • Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    Article  CAS  PubMed  Google Scholar 

  • Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook 20:1–9

    Google Scholar 

  • Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciche TA, Sternberg PW (2007) Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Dev Biol 7:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciche TA, Darby C, Ehlers RU et al (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46

    Article  Google Scholar 

  • Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminscens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowles KN, Cowles CE, Richards GR et al (2007) The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell Microbiol 9:1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Crawford JM, Portmann C, Zhang X et al (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 109:10821–10826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozatier M, Meister M (2007) Drosophila haematopoiesis. Cell Microbiol 9:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Daborn PJ, Waterfield N, Silva CP et al (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99:10742–10747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MM, Engström Y (2012) Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J Innate Immun 4:273–283

    Article  CAS  PubMed  Google Scholar 

  • Dean P, Potter U, Richards EH et al (2004a) Hyperphagocytic haemocytes in Manduca sexta. J Insect Physiol 50:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Dean P, Richards EH, Edwards JP et al (2004b) Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm Manduca sexta. Dev Comp Immunol 28:689–700

    Article  CAS  PubMed  Google Scholar 

  • Dillman AR, Chaston JM, Adams BJ et al (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8:e1002527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobes P, Wang Z, Markus R et al (2012) An improved method for nematode infection assays in Drosophila larvae. Fly 6:75–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence Mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, Wallingford, pp 79–98

    Chapter  Google Scholar 

  • Dowling AJ, Hodgson DJ (2014) An unbiased method for clustering bacterial effectors using host cellular phenotypes. Appl Environ Microbiol 80:1185–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunphy GB, Webster JM (1986) Influence of the Mexican strain of S. feltiae and its associated bacterium Xenorhabdus nematophila on Galleria mellonella. J Parasitol 72:130–135

    Article  Google Scholar 

  • Dunphy GB, Webster JM (1987) Partially characterized components of the epicuticle of dauer juvenile Steinernema feltiae and their influence on the haemocyte activity in Galleria mellonella. J Parasitol 73:584–588

    Article  CAS  Google Scholar 

  • Ebrahimi L, Niknam G, Dunphy GB (2011) Hemocyte responses of the Colorado potato beetle, Leptinotarsa decemlineata, and the greater wax moth, Galleria mellonella, to the entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. J Insect Sci 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos IG (2009) Novel antibiotic compounds produced by the insect pathogenic bacterium Photorhabdus. Recent Pat Antiinfect Drug Discov 4:81–89

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Revenis C (2011) Role and importance of phenoloxidase in insect hemostasis. J Innate Immun 3:28–33

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Marokhazi J, Millichap PJ et al (2006a) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol 36:517–525

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Millichap PJ, Ffrench-Constant RH et al (2006b) RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev Comp Immunol 30:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Boundy S, Joyce SA et al (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104:2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftherianos I, Baldwin H, Ffrench-Constant RH et al (2008) Developmental modulation of immunity: changes within the feeding period of the fifth larval stage in the defence reactions of Manduca sexta to infection by Photorhabdus. J Insect Physiol 54:309–318

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Felföldi G, Ffrench-Constant RH et al (2009a) Induced nitric oxide synthesis in the gut of Manduca sexta protects against oral infection by the bacterial pathogen Photorhabdus luminescens. Insect Mol Biol 18:507–516

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Waterfield NR, Bone P et al (2009b) A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. FEMS Microbiol Lett 293:170–176

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos RH, Ffrench-Constant RH, Clarke DJ et al (2010a) Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol 18:552–560

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, Joyce S, Ffrench-Constant RH et al (2010b) Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology 137:1695–1706

    Article  CAS  PubMed  Google Scholar 

  • Eleftherianos I, More K, Spivack S et al (2014) Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun 82:4169–4181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felföldi G, Marokhazi J, Kepiro M et al (2009) Identificationof natural target proteins indicates functions of a serralysin-type metalloprotease, PrtA, in anti-immune mechanisms. Appl Environ Microbiol 75:3120–3126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felföldi G, Eleftherianos I, Ffrench-Constant RH et al (2011) A serine proteinase homologue, SPH-3, plays a central role in insect immunity. J Immunol 186:4828–4834

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant R, Waterfield N, Daborn P et al (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433–456

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant RH, Dowling A, Waterfield NR (2007a) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant RH, Eleftherianos I, Reynolds SE (2007b) A nematode symbiont sheds light on invertebrate immunity. Trends Parasitol 23:514–517

    Article  CAS  PubMed  Google Scholar 

  • Forst S, Clarke D (2002) Bacteria-nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, Wallingford, pp 57–77

    Chapter  Google Scholar 

  • Forst S, Dowds B, Boemare N et al (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • Ganesan S, Aggarwal K, Paquette N et al (2011) NF-κB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 349:25–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  CAS  PubMed  Google Scholar 

  • Gold KS, Brückner K (2015) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27:357–368

    Article  CAS  PubMed  Google Scholar 

  • Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268

    Article  CAS  PubMed  Google Scholar 

  • Griffin CT (2012) Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. J Nematol 44:177–184

    PubMed  PubMed Central  Google Scholar 

  • Griffin CT, Downes MJ, Block W (1990) Tests of Antarctic soils for insect parasitic nematodes. Antarctic Sci 2:221–222

    Article  Google Scholar 

  • Gulii V, Dunphy GB, Mandato CA (2009) Innate hemocyte responses of Malacosoma disstria larvae (C. Insecta) to antigens are modulated by intracellular cyclic AMP. Dev Comp Immunol 33:890–900

    Article  CAS  PubMed  Google Scholar 

  • Gulley MM, Zhang X, Michel K (2013) The roles of serpins in mosquito immunology and physiology. J Insect Physiol 59:138–147

    Article  CAS  PubMed  Google Scholar 

  • Hallem EA, Rengarajan M, Ciche TA (2007) Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 17:898–904

    Article  CAS  PubMed  Google Scholar 

  • Han R, Ehlers RU (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Montiel R, Nascimento G et al (2008) Identification, characterization of functional candidate genes for host-parasite interactions in entomopathogenetic nematode Steinernema carpocapsae by suppressive subtractive hybridization. Parasitol Res 103:671–683

    Article  PubMed  Google Scholar 

  • Hao YJ, Montiel R, Nascimento G et al (2009) Identification and expression analysis of the Steinernema carpocapsae elastase-like serine protease gene during the parasitic stage. Exp Parasitol 122:51–60

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Montiel R, Abubucker S et al (2010) Transcripts analysis of the entomopathogenic nematode Steinernema carpocapsae induced in vitro with insect haemolymph. Mol Biochem Parasitol 169:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Montiel R, Lucena MA et al (2012) Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates: uncovering candidate genes involved in insect pathogenicity. Exp Parasitol 130:116–125

    Article  CAS  PubMed  Google Scholar 

  • Held KG, LaRock CN, D’Argenio DA (2007) A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 73:7622–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetru C, Hoffmann JA (2009) NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 1:a000232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–118

    Article  CAS  PubMed  Google Scholar 

  • Hominick WM (1990) Entomopathogenic Rhabditid nematodes and pest control. Parasitol Today 6:148–152

    Article  CAS  PubMed  Google Scholar 

  • Honti V, Csordás G, Kurucz É et al (2014) The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev Comp Immunol 42:47–56

    Article  CAS  PubMed  Google Scholar 

  • Hyrsl P, Dobes P, Wang Z et al (2011) Clotting factors and eicosanoids protect against nematode infections. J Innate Immun 3:65–70

    Article  PubMed  Google Scholar 

  • Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    Article  CAS  PubMed  Google Scholar 

  • Jarosz J (1998) Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity. Parasitology 117:201–208

    Article  PubMed  Google Scholar 

  • Ji D, Kim Y (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J Insect Physiol 50:489–496

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. Adv Exp Med Biol 708:181–204

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Toubarro D, Hao Y et al (2010) Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae. Mol Biochem Parasitol 174:101–108

    Article  CAS  PubMed  Google Scholar 

  • Kenney E, Eleftherianos I (2016) Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 46:13–19

    Article  PubMed  Google Scholar 

  • Kim Y, Ji D, Cho S et al (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J Invertebr Pathol 89:258–264

    Article  CAS  PubMed  Google Scholar 

  • Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2:120075

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan N, Hyrsl P, Simek V (2006) Nitric oxide production by hemocytes of larva and pharate prepupa of Galleria mellonella in response to bacterial lipopolysaccharide: cytoprotective or cytotoxic? Comp Biochem Physiol C Toxicol Pharmacol 142:103–110

    Article  PubMed  CAS  Google Scholar 

  • Kucerova L, Broz V, Arefin B et al (2016) The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J Innate Immun 8:199–210

    Article  CAS  PubMed  Google Scholar 

  • Kurata S (2014) Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol 42:36–41

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A et al (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Lewis EE, Campbell J, Griffin C et al (2006) Behavioral ecology of entomopathogenic nematodes. Biol Control 38:66–79

    Article  Google Scholar 

  • Li XY, Cowles RS, Cowles EA et al (2007) Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int J Parasitol 37:365–374

    Article  CAS  PubMed  Google Scholar 

  • Lindsay SA, Wasserman SA (2014) Conventional and non-conventional Drosophila Toll signaling. Dev Comp Immunol 42:16–24

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zeng H, Yao Q et al (2012) Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression. Mol Biochem Parasitol 185:89–98

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Zhang Q, Zhang J et al (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5:252

    PubMed  PubMed Central  Google Scholar 

  • Manachini B, Schillaci D, Arizza V (2013) Biological responses of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) to Steinernema carpocapsae (Nematoda: Steinernematidae). J Econ Entomol 106:1582–1589

    Article  PubMed  Google Scholar 

  • Marokhazi J, Mihala N, Hudecz F et al (2007) Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate. FEBS J 274:1946–1956

    Article  CAS  PubMed  Google Scholar 

  • Mastore M, Brivio MF (2008) Cuticular surface lipids are responsible for disguise properties of an entomoparasite against host cellular responses. Dev Comp Immunol 32:1050–1062

    Article  CAS  PubMed  Google Scholar 

  • Moshayov A, Koltai H, Glazer I (2013) Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora. Int J Parasitol 43:843–852

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr Biol 15:R887–R899

    Article  CAS  PubMed  Google Scholar 

  • Mulley G, Beeton ML, Wilkinson P et al (2015) From insect to man: Photorhabdus sheds light on the emergence of human pathogenicity. PLoS ONE 10:e0144937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Münch A, Stingl L, Jung K et al (2008) Photorhabdus luminescens genes induced upon insect infection. BMC Genom 9:229

    Article  CAS  Google Scholar 

  • Myllymäki H, Rämet M (2014) JAK/STAT pathway in Drosophila immunity. Scand J Immunol 79:377–385

    Article  PubMed  CAS  Google Scholar 

  • Myllymäki H, Valanne S, Rämet M (2014) The Drosophila imd signaling pathway. J Immunol 192:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Mylonakis E, Podsiadlowski L, Muhammed M et al (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371:20150290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen-LeRoux C, Gaudriault S, Ramarao N et al (2012) How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 15:220–231

    Article  PubMed  Google Scholar 

  • O’Loughlin JL, Spinner JL, Minnich SA et al (2010) Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun 78:773–782

    Article  PubMed  CAS  Google Scholar 

  • Owuama CI (2003) Invasion of insect blood tissue by Xenorhabdus bovienii. Res Microbiol 154:183–189

    Article  PubMed  Google Scholar 

  • Park Y, Kim Y (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch Insect Biochem Physiol 54:134–142

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Kim Y, Stanley D (2004) The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91:371–373

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Aliza AR, Stanley D (2005) A secretory PLA2 associated with tobacco hornworm hemocyte membrane preparations acts in cellular immune reactions. Arch Insect Biochem Physiol 60:105–115

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Herbert EE, Cowles CE et al (2007) Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Cell Microbiol 9:645–656

    Article  CAS  PubMed  Google Scholar 

  • Peña JM, Carrillo MA, Hallem EA (2014) Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infect Immun 83:1130–1138

    Article  CAS  Google Scholar 

  • Peters A (2013) Application and commercialization of nematodes. Appl Microbiol Biotechnol 97:6181–6188

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro VB, Ellar DJ (2006) How to kill a mocking bug? Cell Microbiol 8:545–557

    Article  CAS  PubMed  Google Scholar 

  • Rämet M, Lanot R, Zachary D et al (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156

    Article  PubMed  CAS  Google Scholar 

  • Ratnappan R, Vadnal J, Keaney M et al (2016) RNAi-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora. Parasit Vectors 9:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds SE, Eleftherianos I (2008) RNAi and the insect immune system. In: Beckage NE (ed) Insect immunology. Academic Press, Amsterdam, pp 295–330

    Chapter  Google Scholar 

  • Ribeiro C, Brehélin M (2006) Insect haemocytes: what type of cell is that? J Insect Physiol 52:417–429

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro C, Duvic B, Oliveira P et al (1999) Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells(1). J Insect Physiol 45:677–685

    Article  CAS  PubMed  Google Scholar 

  • Ríos-Barrera LD, Riesgo-Escovar JR (2013) Regulating cell morphogenesis: the Drosophila Jun N-terminal kinase pathway. Genesis 51:147–162

    Article  PubMed  CAS  Google Scholar 

  • Rodou A, Ankrah DO, Stathopoulos C (2010) Toxins and secretion systems of Photorhabdus luminescens. Toxins 2:1250–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolff J, Schmid-Hempel P (2016) Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371:20150297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Satyavathi VV, Minz A, Nagaraju J (2014) Nodulation: an unexplored cellular defense mechanism in insects. Cell Signal 26:1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-llan DI, Han R, Dolinski C (2012) Entomopathogenic nematode production and application technology. J Nematol 44:206–217

    Google Scholar 

  • Shi H, Zeng H, Yang X (2013) An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella. World J Microbiol Biotechnol 29:1705–1711

    Article  CAS  PubMed  Google Scholar 

  • Shokal U, Yadav S, Atri J et al (2016) Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol 16:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha S, Kim Y (2007) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A(2). J Invertebr Pathol 96:64–70

    Article  PubMed  Google Scholar 

  • Shrestha YK, Lee KY (2012) Oral toxicity of Photorhabdus culture media on gene expression of the adult sweetpotato whitefly, Bemisia tabaci. J Invertebr Pathol 109:91–96

    Article  PubMed  Google Scholar 

  • Simões N, Caldas C, Rosa JS et al (2000) Pathogenicity caused by high virulent and low virulent strains of Steinernema carpocapsae to Galleria mellonella. J Invertebr Pathol 75:47–54

    Article  PubMed  Google Scholar 

  • Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611

    Article  CAS  PubMed  Google Scholar 

  • Song CJ, Seo S, Shrestha S et al (2011) Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J Microbiol Biotechnol 21:317–322

    CAS  PubMed  Google Scholar 

  • Stokes BA, Yadav S, Shokal U et al (2015) Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauch O, Ehlers RU (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50:369–374

    Article  CAS  Google Scholar 

  • Tang H (2009) Regulation and function of the melanization reaction in Drosophila. Fly 3:105–111

    Article  CAS  PubMed  Google Scholar 

  • Theopold U, Krautz R, Dushay MS (2014) The Drosophila clotting system and its messages for mammals. Dev Comp Immunol 42:42–46

    Article  CAS  PubMed  Google Scholar 

  • Toubarro D, Lucena-Robles M, Nascimento G et al (2009) An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Toubarro D, Lucena-Robles M, Nascimento G et al (2010) Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J Biol Chem 285:30666–30675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toubarro D, Avila MM, Hao Y et al (2013a) A serpin released by an entomopathogen impairs clot formation in insect defense system. PLoS ONE 8:e69161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toubarro D, Avila MM, Montiel R et al (2013b) A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS ONE 8:e75691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Khan AL, Ali L et al (2014) An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 19:20913–20928

    Article  PubMed  CAS  Google Scholar 

  • Ullah I, Khan AL, Ali L et al (2015) Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J Microbiol 53:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ulvila J, Vanha-Aho LM, Rämet M (2011) Drosophila phagocytosis - still many unknowns under the surface. APMIS 119:651–662

    Article  CAS  PubMed  Google Scholar 

  • Valens M, Broutelle AC, Lefebvre M et al (2002) A zinc metalloprotease inhibitor, Inh, from the insect pathogen Photorhabdus luminescens. Microbiology 148:2427–2437

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313

    Article  CAS  PubMed  Google Scholar 

  • Veillard F, Troxler L, Reichhart JM (2016) Drosophila melanogaster clip-domain serine proteases: structure, function and regulation. Biochimie 122:255–269

    Article  CAS  PubMed  Google Scholar 

  • Vlisidou I, Wood W (2015) Drosophila blood cells and their role in immune responses. FEBS J 282:1368–1382

    Article  CAS  PubMed  Google Scholar 

  • Vlisidou I, Dowling AJ, Evans IR et al (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5:e1000518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlisidou I, Eleftherianos I, Dorus S et al (2010) The KdpD/KdpE two-component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes. J Invertebr Pathol 105:352–362

    Article  PubMed  Google Scholar 

  • Walter TN, Dunphy GB, Mandato CA (2008) Steinernema carpocapsae DD136: metabolites limit the non-self adhesion responses of haemocytes of two lepidopteran larvae, Galleria mellonella (F. Pyralidae) and Malacosoma disstria (F. Lasiocampidae). Exp Parasitol 120:161–174

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gaugler R, Cui L (1994) Variations in Immune Response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema Species. J Nematol 26:11–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wilhelmsson C, Hyrsl P et al (2010) Pathogen entrapment by transglutaminase—a conserved early innate immune mechanism. PLoS Pathog 6:e1000763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterfield NR, Sanchez-Contreras M, Eleftherianos I et al (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105:15967–15972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  CAS  PubMed  Google Scholar 

  • Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  • Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. J Immunol 178:4711–4716

    Article  CAS  PubMed  Google Scholar 

  • Wojda I (2016) Immunity of the greater wax moth Galleria mellonella. Insect Sci. doi:10.1111/1744-7917.12325

    PubMed  Google Scholar 

  • Wu G, Zhao Z, Liu C et al (2014) Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. J Econ Entomol 107:559–569

    Article  PubMed  Google Scholar 

  • Wu G, Yi Y, Lv Y et al (2015a) The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. J Invertebr Pathol 127:63–72

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Yi Y, Sun J et al (2015b) No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Vaccine 33:6307–6313

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Shokal U, Forst S et al (2015) An improved method for generating axenic entomopathogenic nematodes. BMC Res Notes 8:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Zeng HM, Hf Lin et al (2012) An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J Invertebr Pathol 110:60–67

    Article  CAS  PubMed  Google Scholar 

  • Yi Y, Wu G, Lv J et al (2015) Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles. Parasitol Res 115:597–608

    Article  Google Scholar 

  • Zhao Z, Wu G, Wang J et al (2013) Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera larvae immune-primed with Photorhabdus luminescens TT01. PLoS ONE 8:e80146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Eleftherianos laboratory for fruitful discussions. Research in the authors’ laboratory is funded by grants from the National Institutes of Health—National Institute of Allergy and Infectious Diseases (1R01AI110675 and 1R21AI109517) and the Columbian College of Arts and Sciences at George Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Eleftherianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Eleftherianos, I., Shokal, U., Yadav, S., Kenney, E., Maldonado, T. (2016). Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. In: ffrench-Constant, R. (eds) The Molecular Biology of Photorhabdus Bacteria . Current Topics in Microbiology and Immunology, vol 402. Springer, Cham. https://doi.org/10.1007/82_2016_52

Download citation

Publish with us

Policies and ethics