Skip to main content

Synthesis of Antibiotics

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 398))

  • 7531 Accesses

Abstract

The synthesis of β-lactams, tetracyclines, and erythromycins as three of the major families of antibiotics will be described herein. We will describe why these antibiotics were the ultimate synthetic targets in the past and how modern synthetic organic chemistry has evolved to address these challenges with new, improved strategies and methods. An additional aspect we would like to highlight here is the fact that these first syntheses had to be particularly creative as most of the modern synthetic methods were not available at that time, or were developed in the course of these syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers-Schoenberg G, Arison BH, Hensens OD et al (1978) Structure and absolute configuration of thienamycin. J Am Chem Soc 100:6491–6499

    Article  Google Scholar 

  • Alt K (1909) Treatment experiments with arsenophenylglycine in paralytics. Muenchener Medizinische Wochenschrift 56:1457–1459

    CAS  Google Scholar 

  • Bennett GM, Hock AL (1927) Benzyl δ-chlorobutyl ether: a new unsymmetrical derivative of tetramethylene glycol. J Chem Soc 472

    Google Scholar 

  • Bode JW, Fraefel NM, Muri D, Carreira EM (2001) A general solution to the modular synthesis of polyketide building blocks by kanemasa hydroxy-directed nitrile oxide cycloadditions. Angew Chem Int Ed 40:2082–2085

    Article  CAS  Google Scholar 

  • Bruggink A (ed) (2001) Synthesis of β-lactam antibiotics. Chemistry, biocatalysis & process integration. Springer, Netherlands

    Google Scholar 

  • Cabri W, Di Fabio R (2000) From bench to market. The evolution of chemical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Chain E (1948): The chemistry of penicillin. Annu Rev Biochem:657–704

    Google Scholar 

  • Charest MG, Lerner CD, Brubaker JD, Siege DR, Myers AG (2005) A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308(5720):395–398

    Article  CAS  PubMed  Google Scholar 

  • Chauvette RR, Flynn EH, Jackson BG, Lavagnino ER, Morin RB, Mueller RA, Pioch RP, Roeske RW, Ryan CW, Spencer JL, Van Heyninge E (1962) Chemistry of cephalosporin antibiotics. II. Preparation of a new class of antibiotics and the relation of structure to activity. J Am Chem Soc 84:3401–3402

    Article  CAS  Google Scholar 

  • Clarke HT (ed) (1949) The chemistry of penicillin. Princeton University Press, New Jersey

    Google Scholar 

  • Clarke HT, Johnson JR, Robinson R (1949) The chemistry of penicillin. Report on a collaborative investigation by american and british chemists under the joint sponsorship of the office of scientific research and development, Washington, D.C., and the Medical Research Council. Princeton University Press, Princeton

    Google Scholar 

  • Corey EJ, Nicolaou KC (1974) Efficient and mild lactonization method for the synthesis of macrolides. J Am Chem Soc 96:5614–5616

    Article  CAS  Google Scholar 

  • Der Spiegel (1968) Diabolische kette. 38:190–191

    Google Scholar 

  • Deshpande AD, Baheti KG, Chatterjee NR (2004) Degradation of β-lactam antibiotics. Curr Sci India 87(12):1684–1695

    CAS  Google Scholar 

  • Domagk G (1935) A contribution to the chemotherapy of bacterial infections. Deut Med Wochenschr 61:250–253

    Article  CAS  Google Scholar 

  • Duggar BM (1948) Aureomycin. A production of the continuing search for new antibiotics. Ann NY Acad Sci 51(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillum, with special reference to their use in the isolation of B. influenzae. Brit J Exp Path 10:226–236

    CAS  PubMed Central  Google Scholar 

  • Gais HJ (1977) Cyclic dithiohemiacetals—synthesis and properties. Angew Chem Int Ed 16:196–197

    Article  Google Scholar 

  • Georg GI (1993) The organic chemistry of β-lactams. VCH Publishers, New York

    Google Scholar 

  • Hamilton R (ed) (2014) Tarascon pocket pharmacopoeia 2015. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  • Hanessian S, Banoub J (1977) Chemistry of the glycosidic linkage. An efficient synthesis of 1,2-trans-di-saccharides. Carbohydr Res 53:C13

    Google Scholar 

  • Hanessian S, Desilets D, Bennani YL (1990) A novel ring-closure strategy for the carbapenems. The total synthesis of (+)-thienamycin. J Org Chem 55:3098–3103

    Article  CAS  Google Scholar 

  • Hodgkin DC, Maslen EN (1961) The X-ray analysis of the structure of cephalosporin C. Biochem J 79(2):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi H, Kameoka C, Iriyama H, Kodama K, Sato T, Ikeda M (1995) Sulfur-directed regioselective radical cyclization leading to β-lactams. Formal synthesis of (±)-ps-5 and (+)-thienamycin. J Org Chem 60:1276–1284

    Article  CAS  Google Scholar 

  • Jacobi PA, Murphree S, Rupprecht F, Zheng WJ (1996) Formal total syntheses of the β-lactam antibiotics thienamycin and ps-5. J Org Chem 61:2413–2427

    Article  CAS  Google Scholar 

  • Johnston DBR, Schmitt SM, Bouffard FA, Christensen BG (1978) Total synthesis of (±)-thienamycin. J Am Chem Soc 100:313–315

    Article  CAS  Google Scholar 

  • Korst JJ, Johnston JD, Woodward RB (1968) The total synthesis of dl-6-demethyl-6-deoxytetracycline. J Am Chem Soc 90:439–457

    Article  CAS  Google Scholar 

  • Krishna MM, Babu MS, Vyas KD, Kulkarni AK (1998) Process for preparing roxithromycin and derivatives thereof. Eur Pat EP1004591 A1

    Google Scholar 

  • Krohn K, Kirst H, Maag H (eds) (1993) Antibiotics and antiviral compounds. Chemical synthesis and modification. VCH, Weinheim, New York

    Google Scholar 

  • Lesher GY, Gruett MD, Froelich EJ, Brundage RP, Bailey JH (1962) 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Chem 5:1063–1065

    Article  CAS  Google Scholar 

  • Loder B, Newton GGF, Abraham EP (1961) Sutdies on vitamin A esterase. 4. The hydrolysis and synthesis of vitamin A esters by rat intestinal mucosae. Biochem J 79:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs G (ed) (1993) Recent progress in the chemical synthesis of antibiotics and related microbial products. Springer, Berlin Heidelberg

    Google Scholar 

  • Lukacs G, Ohno M (1990) Recent progress in the chemical synthesis of antibiotics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Massey EH, Kitchell B, Martin LD, Gerzon K, Murphy HW (1970) Erythromycylamine. Tetrahedron Lett 11:157–160

    Article  Google Scholar 

  • McCormick MH, McGuire JM, Pittenger GE, Pittenger RC, Stark WM (1956) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Ann 1955–1956:606–611

    Google Scholar 

  • Mcgill JM (1992) One step process for production of dirithromycin. CA2079430 A1, 29 Sep 1992

    Google Scholar 

  • McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  • Melillo DG, Shinkai I, Liu T, Ryan K, Sletzinger M (1980) A practical synthesis of (±)-thienamycin. Tetrahedron Lett 21:2783–2786

    Article  CAS  Google Scholar 

  • Melillo DG, Cvetovich RJ, Ryan KM, Sletzinger M (1986) An enantioselective approach to (+)-thienamycin from dimethyl 1,3-acetonedicarboxylate and (+)-α-methylbenzylamine. J Org Chem 51:1498–1504

    Article  CAS  Google Scholar 

  • Morin RB, Gorman M (1982) Chemistry and biology of β-lactam antibiotics. Academic Press, New York London

    Google Scholar 

  • Muri D, Lohse-Fraefel N, Carreira EM (2005) Total synthesis of erythronolide A by MgII-mediated cycloadditions of nitrile oxides. Angew Chem Int Ed 117:4104–4106

    Article  Google Scholar 

  • Muxfeldt H (1962a) Synthese eines terramycin-bausteins. Angew Chem 74:825–828

    Article  CAS  Google Scholar 

  • Muxfeldt H (1962b) Synthesen in der tetracyclin-reihe. Angew Chem 74:443–478

    Article  CAS  Google Scholar 

  • Muxfeldt H, Behling J, Grethe G, Rogalski W (1967) Tetracyclines. VI. Some new aspects in the chemistry of oxazolones and their sulfur analogs. J Am Chem Soc 89:4991–4996

    Article  CAS  Google Scholar 

  • Muxfeldt H, Hardtmann G, Kathawala F, Vedejs E, Mooberry JB (1968) Tetracyclines. VII. Total synthesis of dl-terramycin. J Am Chem Soc 90:6534–6536

    Article  CAS  PubMed  Google Scholar 

  • Muxfeldt H, Haas G, Hardtmann G, Kathawala F, Mooberry JB, Vedejs E (1979) Tetracyclines. 9. Total synthesis of dl-terramycin. J Am Chem Soc 101:689–701

    Article  CAS  Google Scholar 

  • Myers AG, Siegel DR, Buzard DJ, Charest MG (2001) Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions. Org Lett 3:2923–2926

    Article  CAS  PubMed  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA (2009) Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed 48:660–719

    Article  CAS  Google Scholar 

  • Page MI (1992) The chemistry of β-lactams. Springer, Netherlands

    Book  Google Scholar 

  • Pine SH (2004): The base-promoted rearrangements of quaternary ammonium salts. Org React. (Wiley, Hoboken, NJ, USA)

    Google Scholar 

  • Ronn M, Zhu Z, Hogan PC et al (2013) Process R&D of eravacycline. The first fully synthetic fluorocycline in clinical development. Org Process Res Dev 17(5):838–845

    Google Scholar 

  • Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Exp Biol Med 55(1):66–69

    Article  CAS  Google Scholar 

  • Sheehan JC (1982) The enchanted ring. The untold story of penicillin. MIT Press, Cambridge

    Google Scholar 

  • Sheehan JC, Henery-Logan KR (1957) The total synthesis of penicillin V. J Am Chem Soc 79:1262–1263

    Article  CAS  Google Scholar 

  • Sheehan JC, Henery-Logan KR (1959) The total synthesis of penicillin V. J Am Chem Soc 81:3089–3094

    Article  CAS  Google Scholar 

  • Sheehan JC, Henery-Logan KR (1962) The total and partial general syntheses of the penicillins. J Am Chem Soc 84:2983–2990

    Article  CAS  Google Scholar 

  • Sheehan JC, Hess GP (1955) A new method of forming peptide bonds. J Am Chem Soc 77:1067–1068

    Article  CAS  Google Scholar 

  • Sheehan JC, Johnson DA (1954) The synthesis of substituted penicillins and simpler structural analogs. VIII. Phthalimidomalonaldehydic esters. Synthesis and condensation with penicillamine. J Am Chem Soc 76:158–160

    Article  CAS  Google Scholar 

  • Stang EM, White MC (2009) Total synthesis and study of 6-deoxyerythronolide B by late-stage C–H oxidation. Nat Chem 1(7):547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stork G, Hagedorn AA (1978) 3-Benzyloxyisoxazole system in construction of tetracyclines. J Am Chem Soc 100:3609–3611

    Article  CAS  Google Scholar 

  • Sudo R, Kaneda A, Itoh N (1967) Synthesis of carolic acid. J Org Chem 32:1844–1846

    Article  CAS  Google Scholar 

  • Sun C, Wang Q, Brubaker J, Wright PM, Lerner CD, Noson K, Charest M, Siegel DR, Wang YM, Myers AG (2008) A robust platform for the synthesis of new tetracycline antibiotics. J Am Chem Soc 130:17913–17927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Morimoto S, Omura S (1981) Novel erythromycin compounds. Applied for by Taisho Pharmaceutical Co. EP0041355 A1, 4 May 1980

    Google Scholar 

  • Woodward RB (1966) Recent advances in the chemistry of natural products. Science 153(3735):487–493

    Article  CAS  PubMed  Google Scholar 

  • Woodward RB, Heusler K, Gosteli J, Naegeli P, Oppolzer W, Ramage R, Ranganat S, Vorbrugg H (1966) The total synthesis of cephalosporin C. J Am Chem Soc 88:852–853

    Article  CAS  Google Scholar 

  • Woodward RB et al (1981a) Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system. J Am Chem Soc 103:3213–3215

    Article  CAS  Google Scholar 

  • Woodward RB et al (1981b) Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide a secoacid derivative via asymmetric induction. J Am Chem Soc 103:3210–3213

    Article  Google Scholar 

  • Woodward RB et al (1981c) Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin. J Am Chem Soc 103:3215–3217

    Article  CAS  Google Scholar 

  • Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed 53:8840–8869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kalesse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kalesse, M., Böhm, A., Kipper, A., Wandelt, V. (2016). Synthesis of Antibiotics. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_502

Download citation

Publish with us

Policies and ethics