Skip to main content

Two Feet on the Membrane: Uptake of Clostridial Neurotoxins

  • Chapter
  • First Online:
Uptake and Trafficking of Protein Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 406))

Abstract

The extraordinary potency of botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid and spastic paralysis, respectively, and successive respiratory failure. Complex polysialo gangliosides accumulate BoNT and TeNT on the plasma membrane. The ganglioside binding in BoNT/A, B, E, F, G, and TeNT occurs via a conserved ganglioside-binding pocket within the most carboxyl-terminal 25 kDa domain HCC, whereas BoNT/C, DC, and D display here two different ganglioside binding sites. This enrichment step facilitates subsequent binding of BoNT/A, B, DC, D, E, F, and G to the intraluminal domains of the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C and synaptotagmin-I/-II, respectively. Whereas an induced α-helical 20-mer Syt peptide binds via side chain interactions to the tip of the HCC domain of BoNT/B, DC and G, the preexisting, quadrilateral β-sheet helix of SV2C-LD4 binds the clinically most relevant serotype BoNT/A mainly through backbone–backbone interactions at the interface of HCC and HCN. In addition, the conserved, complex N559-glycan branch of SV2C establishes extensive interactions with BoNT/A resulting in delayed dissociation providing BoNT/A more time for endocytosis into synaptic vesicles. An analogous interaction occurs between SV2A/B and BoNT/E. Altogether, the nature of BoNT-SV2 recognition clearly differs from BoNT-Syt. Subsequently, the synaptic vesicle is recycled and the bound neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain, pore formation, and finally translocation of the enzymatically active light chain into the neuronal cytosol to halt release of neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angstrom J, Teneberg S, Karlsson KA (1994) Delineation and comparison of ganglioside-binding epitopes for the toxins of vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes. Proc Natl Acad Sci U S A 91(25):11859–11863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajjalieh SM, Peterson K, Shinghal R, Scheller RH (1992) SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257(5074):1271–1273

    Article  CAS  PubMed  Google Scholar 

  • Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993) Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A 90(6):2150–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin MR, Barbieri JT (2007) Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. Biochemistry 46(11):3200–3210

    Article  CAS  PubMed  Google Scholar 

  • Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H Botulinum Toxins. J Infect Dis 209(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Bengtson IA (1922) Preliminary note on a toxin-producing anaerobe isolated from larvae of the green fly Lucilia caesar. US Public Health Rep 37:164–170

    Article  Google Scholar 

  • Bengtson IA (1923) A toxin-producing anaerobe isolated principally from fly larvae. Its relation to the organisms hitherto known to be the causative factors in the production of botulism. US Public Health Reports 38:340–344

    Google Scholar 

  • Benoit RM, Frey D, Hilbert M, Kevenaar JT, Wieser MM, Stirnimann CU, McMillan D, Ceska T, Lebon F, Jaussi R, Steinmetz MO, Schertler GF, Hoogenraad CC, Capitani G, Kammerer RA (2014) Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 505(7481):108–111

    Article  PubMed  CAS  Google Scholar 

  • Benson MA, Fu Z, Kim JJ, Baldwin MR (2011) Unique ganglioside recognition strategies for clostridial neurotoxins. J Biol Chem 286(39):34015–34022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bercsenyi K, Giribaldi F, Schiavo G (2013) The Elusive Compass of Clostridial Neurotoxins: Deciding When and Where to Go? In: Rummel A, Binz T (eds) Botulinum neurotoxins. Springer-Verlag, Berlin Heidelberg, pp 91–113

    Google Scholar 

  • Bercsenyi K, Schmieg N, Bryson JB, Wallace M, Caccin P, Golding M, Zanotti G, Greensmith L, Nischt R, Schiavo G (2014) Tetanus toxin entry. Nidogens are therapeutic targets for the prevention of tetanus. Science 346(6213):1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Bergey GK, Bigalke H, Nelson PG (1987) Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J Neurophysiol 57(1):121–131

    CAS  PubMed  Google Scholar 

  • Berntsson RP, Peng L, Svensson LM, Dong M, Stenmark P (2013a) Crystal structures of botulinum neurotoxin DC in complex with its protein receptors synaptotagmin I and II. Structure 21(9):1602–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berntsson RP, Peng L, Dong M, Stenmark P (2013b) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 28(4):2058

    Google Scholar 

  • Bigalke H, Muller H, Dreyer F (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24(11–12):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Binz T (2013) Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr Top Microbiol Immunol 364:139–157

    CAS  PubMed  Google Scholar 

  • Binz T, Kurazono H, Popoff MR, Eklund MW, Sakaguchi G, Kozaki S, Krieglstein K, Henschen A, Gill DM, Niemann H (1990) Nucleotide sequence of the gene encoding clostridium botulinum neurotoxin type D. Nucleic Acids Res 18(18):5556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103(2):535–544

    Article  CAS  PubMed  Google Scholar 

  • Bohnert S, Schiavo G (2005) Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem 280(51):42336–42344

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54(5):550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullens RW, O’Hanlon GM, Wagner E, Molenaar PC, Furukawa K, Furukawa K, Plomp JJ, Willison HJ (2002) Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22(16):6876–6884

    CAS  PubMed  Google Scholar 

  • Burke GS (1919) Notes on Bacillus botulinus. J Bacteriol 4(5):555–701

    Google Scholar 

  • Campbell K, Collins MD, East AK (1993) Nucleotide sequence of the gene coding for Clostridium botulinum (Clostridium argentinense) type G neurotoxin: genealogical comparison with other clostridial neurotoxins. Biochim Biophys Acta 1216(3):487–491

    Article  CAS  PubMed  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444(7122):1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Chang WP, Südhof TC (2009) SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci 29(4):883–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3(7):498–508

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Korkeala H, Aarnikunnas J, Lindstrom M (2007) Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 189(23):8643–8650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Baldwin MR, Barbieri JT (2008) Molecular basis for tetanus toxin coreceptor interactions. Biochemistry 47(27):7179–7186

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Fu Z, Kim JJ, Barbieri JT, Baldwin MR (2009) Gangliosides as high affinity receptors for tetanus neurotoxin. J Biol Chem 284(39):26569–26577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosman M, Lightstone FC, Krishnan VV, Zeller L, Prieto MC, Roe DC, Balhorn R (2002) Identification of novel small molecules that bind to two different sites on the surface of tetanus toxin C fragment. Chem Res Toxicol 15(10):1218–1228

    Article  CAS  PubMed  Google Scholar 

  • Critchley DR, Habig WH, Fishman PH (1986) Reevaluation of the role of gangliosides as receptors for tetanus toxin. J Neurochem 47(1):213–222

    Article  CAS  PubMed  Google Scholar 

  • Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26(4):1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Debaisieux S, Encheva V, Chakravarty P, Snijders AP, Schiavo G (2016) Analysis of signaling endosome composition and dynamics using SILAC in embryonic stem cell-derived neurons. Mol Cell Proteomics 15(2):542–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G (2006a) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174(3):459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, Bucci C, Schiavo G (2006b) Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52(2):293–305

    Article  CAS  PubMed  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307(5950):457–460

    Google Scholar 

  • Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162(7):1293–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179(7):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type h gene. J Infect Dis 209(2):192–202

    Article  CAS  PubMed  Google Scholar 

  • East AK, Richardson PT, Allaway D, Collins MD, Roberts TA, Thompson DE (1992) Sequence of the gene encoding type F neurotoxin of Clostridium botulinum. FEMS Microbiol Lett 75(2–3):225–230

    Article  CAS  PubMed  Google Scholar 

  • East AK, Bhandari M, Hielm S, Collins MD (1998) Analysis of the botulinum neurotoxin type F gene clusters in proteolytic and nonproteolytic Clostridium botulinum and Clostridium barati. Curr Microbiol 37(4):262–268

    Article  CAS  PubMed  Google Scholar 

  • Eisel U, Jarausch W, Goretzki K, Henschen A, Engels J, Weller U, Hudel M, Habermann E, Niemann H (1986) Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. Embo J 5(10):2495–2502

    Google Scholar 

  • Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW (2000) The structures of the HC-fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275(12):8889–8894

    Article  CAS  PubMed  Google Scholar 

  • Eswaramoorthy S, Kumaran D, Swaminathan S (2001) Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr D Biol Crystallogr 57(Pt 11):1743–1746

    Article  CAS  PubMed  Google Scholar 

  • Eswaramoorthy S, Sun J, Li H, Singh BR, Swaminathan S (2015) Molecular assembly of Clostridium botulinum progenitor M complex of type E. Sci Rep 5:17795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evinger C, Erichsen JT (1986) Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res 380(2):383–388

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008a) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4(12):e1000245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer A, Garcia-Rodriguez C, Geren I, Lou J, Marks JD, Nakagawa T, Montal M (2008b) Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy. J Biol Chem 283(7):3997–4003

    Article  CAS  PubMed  Google Scholar 

  • Fishman PS, Carrigan DR (1987) Retrograde transneuronal transfer of the C-fragment of tetanus toxin. Brain Res 406(1–2):275–279

    Article  CAS  PubMed  Google Scholar 

  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin HC-fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276(34):32274–32281

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48(24):5631–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A, Lou J, Geren I, Stevens RC, Marks JD (2007) Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 25(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodriguez C, Geren IN, Lou J, Conrad F, Forsyth C, Wen W, Chakraborti S, Zao H, Manzanarez G, Smith TJ, Brown J, Tepp WH, Liu N, Wijesuriya S, Tomic MT, Johnson EA, Smith LA, Marks JD (2011) Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin. Protein Eng Des Sel 24(3):321–331

    Article  CAS  PubMed  Google Scholar 

  • Geppert M, Archer BT 3rd, Südhof TC (1991) Synaptotagmin II. A novel differentially distributed form of synaptotagmin. J Biol Chem 266(21):13548–13552

    CAS  PubMed  Google Scholar 

  • Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46(1):86–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez DF, Ciccarelli AS (1970) Another type of clostridium botulinum. Zentralblatt für Bakteriologie [Orig A]. 215(2):221–224

    CAS  Google Scholar 

  • Ginalski K, Venclovas C, Lesyng B, Fidelis K (2000) Structure-based sequence alignment for the beta-trefoil subdomain of the clostridial neurotoxin family provides residue level information about the putative ganglioside binding site. FEBS Lett 482(1–2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Giordani F, Fillo S, Anselmo A, Palozzi AM, Fortunato A, Gentile B, Azarnia Tehran D, Ciammaruconi A, Spagnolo F, Pittiglio V, Anniballi F, Auricchio B, De Medici D, Lista F (2015) Genomic characterization of Italian Clostridium botulinum group I strains. Infect Genet Evol 36:62–71

    Google Scholar 

  • Gonzalez-Escalona N, Thirunavukkarasu N, Singh A, Toro M, Brown EW, Zink D, Rummel A, Sharma SK (2014) Draft genome sequence of bivalent Clostridium botulinum Strain IBCA10-7060, encoding botulinum neurotoxin B and a new FA mosaic type. Genome Announc 2(6)

    Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335(6071):977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser D, Eklund MW, Kurazono H, Binz T, Niemann H, Gill DM, Boquet P, Popoff MR (1990) Nucleotide sequence of Clostridium botulinum C1 neurotoxin. Nucleic Acids Res 18(16):4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazel EL (1937) A strain of B. botulinus not classified as type A, B, or C. J Infect Dis 60(3):260–264

    Google Scholar 

  • Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12(10):2947–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill KK, Smith TJ (2013) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364:1–20

    PubMed  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189(3):818–832

    Article  CAS  PubMed  Google Scholar 

  • Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutson RA, Collins MD, East AK, Thompson DE (1994) Nucleotide sequence of the gene coding for non-proteolytic Clostridium botulinum type B neurotoxin: comparison with other clostridial neurotoxins. Curr Microbiol 28(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Hutson RA, Zhou Y, Collins MD, Johnson EA, Hatheway CL, Sugiyama H (1996) Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem 271(18):10786–10792

    Article  CAS  PubMed  Google Scholar 

  • Ihara H, Kohda T, Morimoto F, Tsukamoto K, Karasawa T, Nakamura S, Mukamoto M, Kozaki S (2003) Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. Biochim Biophys Acta 1625(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Janz R, Sudhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94(4):1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman S, Eswaramoorthy S, Kumaran D, Swaminathan S (2005) Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin. Proteins 61(2):288–295

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444(7122):1092–1095

    Article  CAS  PubMed  Google Scholar 

  • Kalb SR, Baudys J, Rees JC, Smith TJ, Smith LA, Helma CH, Hill K, Kull S, Kirchner S, Dorner MB, Dorner BG, Pirkle JL, Barr JR (2012) De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics. Anal Bioanal Chem 403(1):215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamata Y, Kozaki S, Sakaguchi G, Iwamori M, Nagai Y (1986) Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem Biophys Res Commun 140(3):1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Karalewitz AP, Kroken AR, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2010) Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. Biochemistry 49(37):8117–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karalewitz AP, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2012) Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J Biol Chem 287(48):40806–40816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Allende ML, Wada R, Kono M, Sango K, Deng C, Miyakawa T, Crawley JN, Werth N, Bierfreund U, Sandhoff K, Proia RL (2001) Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276(10):6885–6888

    Article  CAS  PubMed  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43(2):526–532

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Iwamori M, Nagai Y (1980) Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 628(3):328–335

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Takamiya K, Aizawa S, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Igimi S, Furukawa K, Furukawa K (2005) Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741(1–2):1–3

    CAS  PubMed  Google Scholar 

  • Kitasato S (1889) Über den Tetanusbacillus. Z für Hygiene und Infektionskrankheiten 7:225–234

    Google Scholar 

  • Kozaki S, Ogasawara J, Shimote Y, Kamata Y, Sakaguchi G (1987) Antigenic structure of Clostridium botulinum type B neurotoxin and its interaction with gangliosides, cerebroside, and free fatty acids. Infect Immun 55(12):3051–3056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozaki S, Kamata Y, Watarai S, Nishiki T, Mochida S (1998) Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins. Microb Pathog 25(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Kranz G, Paul A, Voller B, Posch M, Windischberger C, Auff E, Sycha T (2011) Long-term efficacy and respective potencies of botulinum toxin A and B: a randomized, double-blind study. Br J Dermatol 164(1):176–181

    Article  CAS  PubMed  Google Scholar 

  • Kroken AR, Karalewitz AP, Fu Z, Kim JJ, Barbieri JT (2011a) Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons. J Biol Chem 286(30):26828–26837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroken AR, Karalewitz AP, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2011b) Unique ganglioside binding by botulinum neurotoxins C and D-SA. FEBS J 278(23):4486–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull S, Schulz KM, Weisemann J, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG (2015) Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS ONE 10(2):e0116381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386(1):233–245

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902

    Article  CAS  PubMed  Google Scholar 

  • Lalli G, Herreros J, Osborne SL, Montecucco C, Rossetto O, Schiavo G (1999) Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci 112(Pt 16):2715–2724

    CAS  PubMed  Google Scholar 

  • Landmann G (1904) Über die Ursache der Darmstädter Bohnenvergiftung. Hygienische Rundschau. 1904;IV:10

    Google Scholar 

  • Lawrence G, Wang J, Chion CK, Aoki KR, Dolly JO (2007) Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E. J Pharmacol Exp Ther 320(1):410–418

    Article  CAS  PubMed  Google Scholar 

  • Lazarovici P, Yavin E (1986) Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component. Biochemistry 25(22):7047–7054

    Article  CAS  PubMed  Google Scholar 

  • Leuchs J (1910) Beiträge zur Kenntnis des Toxins und Antitoxins des Bacillus botulinus. Z für Hygiene und Infektionskrankheiten 65(1):55–84

    Article  Google Scholar 

  • Li JY, Jahn R, Dahlstrom A (1994) Synaptotagmin I is present mainly in autonomic and sensory neurons of the rat peripheral nervous system. Neuroscience 63(3):837–850

    Article  CAS  PubMed  Google Scholar 

  • Lightstone FC, Prieto MC, Singh AK, Piqueras MC, Whittal RM, Knapp MS, Balhorn R, Roe DC (2000) Identification of novel small molecule ligands that bind to tetanus toxin. Chem Res Toxicol 13(5):356–362

    Article  CAS  PubMed  Google Scholar 

  • Louch HA, Buczko ES, Woody MA, Venable RM, Vann WF (2002) Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Biochemistry 41(46):13644–13652

    Article  CAS  PubMed  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580(8):2011–2014

    Article  CAS  PubMed  Google Scholar 

  • Mahrhold S, Strotmeier J, Garcia-Rodriguez C, Lou J, Marks JD, Rummel A, Binz T (2013) Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem J 453(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Mahrhold S, Bergstrom T, Stern D, Dorner BG, Astot C, Rummel A (2016) Only the complex N559-glycan in SV2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochem J

    Google Scholar 

  • Marxen P, Bigalke H (1989) Tetanus toxin: inhibitory action in chromaffin cells is initiated by specified types of gangliosides and promoted in low ionic strength solution. Neurosci Lett 107(1–3):261–266

    Article  CAS  PubMed  Google Scholar 

  • Marxen P, Fuhrmann U, Bigalke H (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27(8):849–859

    Article  CAS  PubMed  Google Scholar 

  • Marxen P, Erdmann G, Bigalke H (1991) The translocation of botulinum A neurotoxin by chromaffin cells is promoted in low ionic strength solution and is insensitive to trypsin. Toxicon 29(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Maslanka SE, Luquez C, Dykes JK, Tepp WH, Pier CL, Pellett S, Raphael BH, Kalb SR, Barr JR, Rao A, Johnson EA (2016) A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and Is neutralized with serotype A Antitoxin. J Infect Dis 213(3):379–385

    Article  PubMed  Google Scholar 

  • Mazuet C, Sautereau J, Legeay C, Bouchier C, Bouvet P, Popoff MR (2015) An atypical outbreak of food-borne botulism due to Clostridium botulinum types B and E from ham. J Clin Microbiol 53(2):722–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer KF, Gunnison JB (1929) South African cultures of Clostridium botulinum and Cl. parabotulinum with a description of Cl. botulinum type D, N. SP. J Infect Dis 45:106–118

    Article  Google Scholar 

  • Møller V, Scheibel I (1960) Preliminary report on the isolation of an apparently new type of CI. botulinum. Acta Pathol Microbiol Scand 48:80

    Article  PubMed  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11(8):314–317

    Article  CAS  Google Scholar 

  • Moriishi K, Syuto B, Kubo S, Oguma K (1989) Molecular diversity of neurotoxins from Clostridium botulinum type D strains. Infect Immun 57(9):2886–2891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K (1996a) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307(2):123–126

    Article  PubMed  Google Scholar 

  • Moriishi K, Koura M, Fujii N, Fujinaga Y, Inoue K, Syuto B, Oguma K (1996b) Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol 62(2):662–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullaney BP, Pallavicini MG, Marks JD (2001) Epitope mapping of neutralizing botulinum neurotoxin A antibodies by phage display. Infect Immun 69(10):6511–6514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B, Boquet P (2001) High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 289(2):623–629

    Article  CAS  PubMed  Google Scholar 

  • Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4(5):179–185

    Article  CAS  PubMed  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269(14):10498–10503

    CAS  PubMed  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S (1996a) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378(3):253–257

    Article  CAS  PubMed  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sekiguchi M, Takahashi M, Kozaki S (1996b) Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA. Neurosci Lett 208(2):105–108

    Article  CAS  PubMed  Google Scholar 

  • Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299(5):C960–C967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuemket N, Tanaka Y, Tsukamoto K, Tsuji T, Nakamura K, Kozaki S, Yao M, Tanaka I (2011) Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: insight into the ganglioside binding mechanism. Biochem Biophys Res Commun 411(2):433–439

    Article  CAS  PubMed  Google Scholar 

  • Ochanda JO, Syuto B, Ohishi I, Naiki M, Kubo S (1986) Binding of Clostridium botulinum neurotoxin to gangliosides. J Biochem (Tokyo) 100(1):27–33

    Article  CAS  Google Scholar 

  • O’Grady P, Thai TC, Saito H (1998) The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J Cell Biol 141(7):1675–1684

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne RH, Bradford HF (1973) Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nat New Biol 244(135):157–158

    Article  CAS  PubMed  Google Scholar 

  • Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Sudhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26(52):13493–13504

    Article  CAS  PubMed  Google Scholar 

  • Peck MW, Smith TJ (2016) Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. J Bacteriol

    Google Scholar 

  • Pellett S, Tepp WH, Bradshaw M, Kalb SR, Dykes JK, Lin G, Nawrocki EM, Pier CL, Barr JR, Maslanka SE, Johnson EA (2016) Purification and characterization of botulinum neurotoxin FA from a genetically modified clostridium botulinum strain. mSphere 1(1):e00100–e00115

    Google Scholar 

  • Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7(3):e1002008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M (2012) Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 125(Pt 13):3233–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345(6272):260–263

    Article  CAS  PubMed  Google Scholar 

  • Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236(3):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13(11):1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Henke T, Rossetto O, Mahrhold S, Krez N, Rummel A, Montecucco C, Binz T (2013) Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett 587(23):3831–3836

    Article  CAS  PubMed  Google Scholar 

  • Poulet S, Hauser D, Quanz M, Niemann H, Popoff MR (1992) Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain Beluga) and Clostridium butyricum (strains ATCC 43181 and ATCC 43755). Biochem Biophys Res Commun 183(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Raphael BH, Choudoir MJ, Luquez C, Fernandez R, Maslanka SE (2010) Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol 76(14):4805–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raphael BH, Lautenschlager M, Kalb SR, de Jong LI, Frace M, Luquez C, Barr JR, Fernandez RA, Maslanka SE (2012) Analysis of a unique Clostridium botulinum strain from the Southern hemisphere producing a novel type E botulinum neurotoxin subtype. BMC Microbiol 12:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rummel A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. In: Rummel A, Binz T (eds) Botulinum neurotoxins. Springer-Verlag, Berlin Heidelberg, pp 61–90

    Google Scholar 

  • Rummel A (2015) The long journey of botulinum neurotoxins into the synapse. Toxicon 107(Pt A):9–24

    Google Scholar 

  • Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the HCC-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326(3):835–847

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004a) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279(29):30865–30870

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004b) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51(3):631–643

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104(1):359–364

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Häfner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110(6):1942–1954

    Article  CAS  PubMed  Google Scholar 

  • Santos-Buelga JA, Collins MD, East AK (1998) Characterization of the genes encoding the botulinum neurotoxin complex in a strain of Clostridium botulinum producing type B and F neurotoxins. Curr Microbiol 37(5):312–318

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL, DasGupta BR, Ringler NJ (1991) Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J Neurochem 57(3):1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Ferrari G, Rossetto O, Montecucco C (1991) Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Lett 290(1–2):227–230

    Article  CAS  PubMed  Google Scholar 

  • Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn Schmiedebergs Arch Pharmacol 317(4):326–330

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, Karalewitz A, Benefield DA, Mushrush DJ, Pruitt RN, Spiller BW, Barbieri JT, Lacy DB (2010) Structural analysis of botulinum neurotoxin type G receptor binding. Biochemistry 49(25):5200–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MH, Davis IJ, Cerdeno-Tarraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J (2007) Genome sequence of a proteolytic (group I) clostridium botulinum strain hall A and comparative analysis of the clostridial genomes. Genome Res 17(7):1082–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro RE, Specht CD, Collins BE, Woods AS, Cotter RJ, Schnaar RL (1997) Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J Biol Chem 272(48):30380–30386

    Article  CAS  PubMed  Google Scholar 

  • Sikorra S, Skiba M, Dorner MB, Weisemann J, Weil M, Valdezate S, Davletov B, Rummel A, Dorner BG, Binz T (2016) Botulinum neurotoxin F subtypes cleaving the VAMP-2 Q58-K59 peptide bond exhibit unique catalytic properties and substrate specificities. Biochemistry

    Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212(1):16–21

    CAS  PubMed  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther 223(3):695–701

    CAS  PubMed  Google Scholar 

  • Simpson LL (1984a) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res 305(1):177–180

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL (1984b) The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin. J Pharmacol Exp Ther 229(1):182–187

    CAS  PubMed  Google Scholar 

  • Simpson LL (1985) Pharmacological experiments on the binding and internalization of the 50,000 dalton carboxyterminus of tetanus toxin at the cholinergic neuromuscular junction. J Pharmacol Exp Ther 234(1):100–105

    CAS  PubMed  Google Scholar 

  • Simpson LL, Rapport MM (1971a) Ganglioside inactivation of botulinum toxin. J Neurochem 18(7):1341–1343

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL, Rapport MM (1971b) The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J Neurochem 18(9):1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N (2000) Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 37(5):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73(9):5450–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TJ, Hill KK, Xie G, Foley BT, Williamson CH, Foster JT, Johnson SL, Chertkov O, Teshima H, Gibbons HS, Johnsky LA, Karavis MA, Smith LA (2015a) Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. Infect Genet Evol 30:102–113

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Hill KK, Raphael BH (2015b) Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 166(4):290–302

    Article  PubMed  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4(8):e1000129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stenmark P, Dong M, Dupuy J, Chapman ER, Stevens RC (2010) Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol 397(5):1287–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strotmeier J, Lee K, Völker AK, Mahrhold S, Zong Y, Zeiser J, Zhou J, Pich A, Bigalke H, Binz T, Rummel A, Jin R (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Strotmeier J, Gu S, Jutzi S, Mahrhold S, Zhou J, Pich A, Eichner T, Bigalke H, Rummel A, Jin R, Binz T (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81(1):143–156

    Article  CAS  PubMed  Google Scholar 

  • Strotmeier J, Willjes G, Binz T, Rummel A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586(4):310–313

    Article  CAS  PubMed  Google Scholar 

  • Strotmeier J, Mahrhold S, Krez N, Janzen C, Lou J, Marks JD, Binz T, Rummel A (2014) Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett 588(7):1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stryker E, Johnson KG (2007) LAR, liprin alpha and the regulation of active zone morphogenesis. J Cell Sci 120(Pt 21):3723–3728

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC (2013) A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med 19(10):1227–1231

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277(10):7629–7632

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER (2011) Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10(3):237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton JM, Chow-Worn O, Spaven L, Silman NJ, Hallis B, Shone CC (2001) Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones. FEBS Lett 493(1):45–59

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7(8):693–699

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa K, Iwamori M, Kozaki S, Sakaguchi G, Tanaka R, Takayama H, Nagai Y (1986) TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 201(2):229–232

    Article  CAS  PubMed  Google Scholar 

  • Thompson DE, Brehm JK, Oultram JD, Swinfield TJ, Shone CC, Atkinson T, Melling J, Minton NP (1990) The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur J Biochem 189(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Thompson DE, Hutson RA, East AK, Allaway D, Collins MD, Richardson PT (1993) Nucleotide sequence of the gene coding for Clostridium barati type F neurotoxin: comparison with other clostridial neurotoxins. FEMS Microbiol Lett 108(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, Kozaki S (2005) Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280(42):35164–35171

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Kozai Y, Ihara H, Kohda T, Mukamoto M, Tsuji T, Kozaki S (2008) Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. Microb Pathog 44(6):484–493

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Ozeki C, Kohda T, Tsuji T (2015) CRISPR/Cas9-mediated genomic deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 gene in murine P19 Embryonal carcinoma cells results in low sensitivity to botulinum Neurotoxin type C. PLoS ONE 10(7):e0132363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Ermengem EP (1897) Ueber einen neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Z für Hygiene und Infektionskrankheiten 26(1):1–56

    Google Scholar 

  • van Heyningen WE (1959) Tentative identification of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 20:810–820

    Google Scholar 

  • van Heyningen WE, Miller PA (1961) The fixation of tetanus toxin by ganglioside. J Gen Microbiol 24:107–119

    Article  Google Scholar 

  • Verderio C, Coco S, Rossetto O, Montecucco C, Matteoli M (1999) Internalization and proteolytic action of botulinum toxins in CNS neurons and astrocytes. J Neurochem 73(1):372–379

    Article  CAS  PubMed  Google Scholar 

  • Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, Janz R, Heidelberger R (2010) SV2 acts via presynaptic calcium to regulate neurotransmitter release. Neuron 66(6):884–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wangroongsarb P, Kohda T, Jittaprasartsin C, Suthivarakom K, Kamthalang T, Umeda K, Sawanpanyalert P, Kozaki S, Ikuta K (2014) Molecular characterization of Clostridium botulinum isolates from foodborne outbreaks in Thailand, 2010. PLoS ONE 9(1):e77792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weedmark KA, Lambert DL, Mabon P, Hayden KL, Urfano CJ, Leclair D, Van Domselaar G, Austin JW, Corbett CR (2014) Two novel toxin variants revealed by whole-genome sequencing of 175 Clostridium botulinum type E strains. Appl Environ Microbiol 80(20):6334–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisemann J, Stern D, Mahrhold S, Dorner BG, Rummel A (2016) Botulinum neurotoxin serotype a recognizes its protein receptor SV2 by a different mechanism than botulinum neurotoxin B synaptotagmin. Toxins. 8(5):154

    Google Scholar 

  • Whelan SM, Elmore MJ, Bodsworth NJ, Brehm JK, Atkinson T, Minton NP (1992a) Molecular cloning of the Clostridium botulinum structural gene encoding the type B neurotoxin and determination of its entire nucleotide sequence. Appl Environ Microbiol 58(8):2345–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan SM, Elmore MJ, Bodsworth NJ, Atkinson T, Minton NP (1992b) The complete amino acid sequence of the Clostridium botulinum type-E neurotoxin, derived by nucleotide-sequence analysis of the encoding gene. Eur J Biochem 204(2):657–667

    Article  CAS  PubMed  Google Scholar 

  • Willems A, East AK, Lawson PA, Collins MD (1993) Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins. Res Microbiol 144(7):547–556

    Article  CAS  PubMed  Google Scholar 

  • Williamson LC, Bateman KE, Clifford JC, Neale EA (1999) Neuronal sensitivity to tetanus toxin requires gangliosides. J Biol Chem 274(35):25173–25180

    Article  CAS  PubMed  Google Scholar 

  • Willjes G, Mahrhold S, Strotmeier J, Eichner T, Rummel A, Binz T (2013) Botulinum neurotoxin G binds synaptotagmin-II in a mode similar to that of serotype B: tyrosine 1186 and lysine 1191 cause its lower affinity. Biochemistry 52(22):3930–3938

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Bajjalieh SM (2001) SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 3(8):691–698

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30(16):5569–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R (2016) N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 23(7):656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FL, Dong M, Yao J, Tepp WH, Lin G, Johnson EA, Chapman ER (2010) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6(11):e1001207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokosawa N, Kurokawa Y, Tsuzuki K, Syuto B, Fujii N, Kimura K, Oguma K (1989) Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines. Infect Immun 57(1):272–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yowler BC, Schengrund CL (2004) Botulinum neurotoxin a changes conformation upon binding to ganglioside GT1b. Biochemistry 43(30):9725–9731

    Article  CAS  PubMed  Google Scholar 

  • Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277(36):32815–32819

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Varnum SM (2012) The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie 94(3):920–923

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Buchko GW, Qin L, Robinson H, Varnum SM (2011) Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions. Biochem Biophys Res Commun 404(1):407–412

    Article  CAS  PubMed  Google Scholar 

  • Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O, Zanotti G, Binz T, Montecucco C (2016) The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 6:30257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rummel, A. (2016). Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. In: Barth, H. (eds) Uptake and Trafficking of Protein Toxins. Current Topics in Microbiology and Immunology, vol 406. Springer, Cham. https://doi.org/10.1007/82_2016_48

Download citation

Publish with us

Policies and ethics