Advertisement

Deconstructing the Chlamydial Cell Wall

  • Anna Klöckner
  • Henrike Bühl
  • Patrick Viollier
  • Beate HenrichfreiseEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 412)

Abstract

The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the “chlamydial anomaly.” In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.

Notes

Acknowledgments

Support was received by the intramural funding scheme of the Medical Faculty of Bonn, BONFOR. H.B. received a PhD fellowship from the Jürgen Manchot foundation. B.H. is associated member of the DFG Cluster of Excellence ImmunoSensation.

References

  1. Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29:949–959PubMedCrossRefGoogle Scholar
  2. Abdelrahman YM, Rose LA, Belland RJ (2011) Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res 39:1843–1854PubMedCrossRefGoogle Scholar
  3. Abromaitis S, Stephens RS (2009) Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 5:e1000357PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16PubMedCrossRefGoogle Scholar
  5. Ball SG, Subtil A, Bhattacharya D et al (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barbour AG, Amano K, Hackstadt T et al (1982) Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151:420–428PubMedPubMedCentralGoogle Scholar
  7. Baud D, Goy G, Osterheld MC et al (2014) Role of Waddlia chondrophila placental infection in miscarriage. Emerg Infect Dis 20:460–464PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baud D, Thomas V, Arafa A et al (2007) Waddlia chondrophila, a potential agent of human fetal death. Emerg Infect Dis 13:1239–1243PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bedson SP, Bland JOW (1932) A morphological study of psittacosis virus, with the description of a developmental cycle. Br J Exp Pathol 13:461–466PubMedCentralGoogle Scholar
  10. Belland RJ, Zhong G, Crane DD et al (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100:8478–8483PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bobrovsky P, Manuvera V, Polina N et al (2016) Recombinant human peptidoglycan recognition proteins reveal antichlamydial activity. Infect Immun IAI.01495–15Google Scholar
  12. Borel N, Leonard C, Slade J et al (2016) Chlamydial antibiotic resistance and treatment failure in veterinary and human medicine. Curr Clin Microbiol Reports 3:10–18CrossRefGoogle Scholar
  13. Borel N, Pospischil A, Hudson AP et al (2014) The role of viable but non-infectious developmental forms in chlamydial biology. Front Cell Infect Microbiol 4:97PubMedPubMedCentralCrossRefGoogle Scholar
  14. Born TL, Blanchard JS (1999) Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 3:607–613PubMedCrossRefGoogle Scholar
  15. Bowie WR (1986) In vitro activity of clavulanic acid, amoxicillin, and ticarcillin against Chlamydia trachomatis. Antimicrob Agents Chemother 29:713–715PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown WJ, Rockey DD (2000) Identification of an antigen localized to an apparent septum within dividing Chlamydiae. Infect Immun 68:708–715PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176PubMedPubMedCentralGoogle Scholar
  18. Cascales E, Gavioli M, Sturgis JN et al (2000) Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol 38:904–915PubMedCrossRefGoogle Scholar
  19. Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300–1311PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chopra I, Storey C, Falla TJ et al (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144:2673–2678PubMedCrossRefGoogle Scholar
  21. Collingro A, Tischler P, Weinmaier T et al (2011) Unity in variety—the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270PubMedPubMedCentralCrossRefGoogle Scholar
  22. D’Ulisse V, Fagioli M, Ghelardini P et al (2007) Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. Microbiology 153:124–138PubMedCrossRefGoogle Scholar
  23. Darveaux JI, Lemanske RF (2014) Infection-related asthma. J Allergy Clin Immunol Pract 2:658–663PubMedPubMedCentralCrossRefGoogle Scholar
  24. De Benedetti S, Bühl H, Gaballah A et al (2014) Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae. Front Cell Infect Microbiol 4:19PubMedPubMedCentralCrossRefGoogle Scholar
  25. Den Blaauwen T, Aarsman MEG, Vischer NOE et al (2003) Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 47:539–547CrossRefGoogle Scholar
  26. Dille S, Herbst K, Volceanov L et al (2014) Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the Chlamydial protease CPAF. PLoS ONE 9:e103220PubMedPubMedCentralCrossRefGoogle Scholar
  27. Domman D, Horn M, Embley TM et al (2015) Plastid establishment did not require a chlamydial partner. Nat Commun 6:6421PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dziarski R, Kashyap DR, Gupta D (2012) Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb Drug Resist 18:280–285PubMedPubMedCentralCrossRefGoogle Scholar
  29. Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erridge C, Pridmore A, Eley A et al (2004) Lipopolysaccharides of bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53:735–740PubMedCrossRefGoogle Scholar
  31. Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3:120143PubMedPubMedCentralCrossRefGoogle Scholar
  32. Facchinelli F, Colleoni C, Ball SG et al (2013) Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci 18:673–679PubMedCrossRefGoogle Scholar
  33. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332PubMedCrossRefGoogle Scholar
  34. Fox A, Rogers JC, Gilbart J et al (1990) Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun 58:835–837PubMedPubMedCentralGoogle Scholar
  35. Frandi A, Jacquier N, Théraulaz L et al (2014) FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat Commun 5:4200PubMedPubMedCentralCrossRefGoogle Scholar
  36. Friedman MG, Dvoskin B, Kahane S (2003) Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5:1013–1021PubMedPubMedCentralCrossRefGoogle Scholar
  37. Frohlich KM, Hua Z, Quayle AJ et al (2014) Membrane vesicle production by Chlamydia trachomatis as an adaptive response. Front Cell Infect Microbiol 4:73PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gaballah A, Kloeckner A, Otten C et al (2011) Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS ONE 6:e25129PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gerding MA, Liu B, Bendezú FO et al (2009) Self-enhanced accumulation of FtsN at division dites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 191:7383–7401PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gerding MA, Ogata Y, Pecora ND et al (2007) The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63:1008–1025PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ghosh AS, Chowdhury C, Nelson DE (2008) Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 16:309–317PubMedCrossRefGoogle Scholar
  42. Ghuysen JM, Goffin C (1999) Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43:2339–2344PubMedPubMedCentralGoogle Scholar
  43. Girardin SE, Boneca IG, Viala J et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872PubMedCrossRefGoogle Scholar
  44. Goffin C, Fraipont C, Ayala JA et al (1996) The non-penicillin-binding module of the tripartite penicillin- binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded. J Bacteriol 178:5402–5409PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grayston JT, Belland RJ, Byrne GI et al (2015) Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis 73:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  46. Greub G (2009) Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15:18–28PubMedCrossRefGoogle Scholar
  47. Guo H, Yi W, Song JK et al (2008) Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8:141–151PubMedCrossRefGoogle Scholar
  48. Halberstaedter L, von Prowazek S (1907) Ueber Zelleinschlüsse parasitärer Natur beim Trachom. Arb aus dem Kais Gesundheitsamt 26:44–47Google Scholar
  49. Hatch TP (1996) Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol 178:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  50. Henrichfreise B, Schiefer A, Schneider T et al (2009) Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 73:913–923PubMedCrossRefGoogle Scholar
  51. Hesse L, Bostock J, Dementin S et al (2003) Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate: amino acid ligase activity. J Bacteriol 185:6507–6512PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hofmann N (2016) Invisible no longer: peptidoglycan in moss chloroplasts. Plant Cell tpc.00521.2016Google Scholar
  53. Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203PubMedPubMedCentralGoogle Scholar
  54. How S, Hobson D, Hart C (1984) Studies in vitro of the nature and synthesis of the cell wall of Chlamydia trachomatis. Curr Microbiol 10:269–274CrossRefGoogle Scholar
  55. Humann J, Lenz LL (2009) Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J Innate Immun 1:88–97PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hurst EW (1953) Chemotherapy of virus diseases. Br Med Bull 9:180–185PubMedCrossRefGoogle Scholar
  57. Inohara N, Ogura Y, Fontalba A et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J Biol Chem 278:5509–5512PubMedCrossRefGoogle Scholar
  58. Jacquier N, Frandi A, Pillonel T et al (2014) Cell wall precursors are required to organize the chlamydial division septum. Nat Commun 5:3578PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jacquier N, Frandi A, Viollier PH et al (2015a) Disassembly of a medial transenvelope structure by antibiotics during intracellular division. Chem Biol 22:1217–1227PubMedCrossRefGoogle Scholar
  60. Jacquier N, Viollier PH, Greub G (2015b) The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 39:262–275PubMedCrossRefGoogle Scholar
  61. Jenkin HM (1960) Preparation and properties of cell walls of the agent of meningopneumonitis. J Bacteriol 80:639–647PubMedPubMedCentralGoogle Scholar
  62. Jogler C, Waldmann J, Huang X et al (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430PubMedPubMedCentralCrossRefGoogle Scholar
  63. Johnson BA, Anker H, Meleney FL (1945) Bacitracin: a new antibiotic produced by a member of the B. subtilis Group. Science 102:376–377PubMedCrossRefGoogle Scholar
  64. Kahan FM, Kahan JS, Cassidy PJ et al (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386PubMedCrossRefGoogle Scholar
  65. Kahane S, Gonen R, Sayada C et al (1993) Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol Lett 109:329–333PubMedCrossRefGoogle Scholar
  66. Karala A-R, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277:2454–2462PubMedCrossRefGoogle Scholar
  67. Kashyap DR, Wang M, Liu LH et al (2011) Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 17:676–683PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kemege KE, Hickey JM, Barta ML et al (2015) Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB. Mol Microbiol 95:365–382PubMedCrossRefGoogle Scholar
  69. Kim DH, Lees WJ, Kempsell KE et al (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35:4923–4928PubMedCrossRefGoogle Scholar
  70. Kintner J, Lajoie D, Hall J et al (2014) Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol 4:44Google Scholar
  71. Klöckner A, Otten C, Derouaux A et al (2014) AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat Commun 5:4201PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kosma P (1999) Chlamydial lipopolysaccharide. Biochim Biophys Acta 1455:387–402PubMedCrossRefGoogle Scholar
  73. Kresse H, Belsey MJ, Rovini H (2007) The antibacterial drugs market. Nat Rev Drug Discov 6:19–20PubMedCrossRefGoogle Scholar
  74. Lambden P, Pickett M, Clarke I (2006) The effect of penicillin on Chlamydia trachomatis DNA replication. Microbiology 152:2573–2578PubMedCrossRefGoogle Scholar
  75. Lambert MP, Neuhaus FC (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110:978–987PubMedPubMedCentralGoogle Scholar
  76. Leaver M, Domínguez-Cuevas P, Coxhead JM et al (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457:849–853PubMedCrossRefGoogle Scholar
  77. Leonard CA, Dewez F, Borel N (2016) Penicillin G-induced chlamydial stress response in a porcine strain of Chlamydia pecorum. Int J Microbiol 2016:1–10CrossRefGoogle Scholar
  78. Liechti G, Kuru E, Packiam M et al (2016) Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog 12:e1005590PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liechti GW, Kuru E, Hall E et al (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–510PubMedPubMedCentralCrossRefGoogle Scholar
  80. Livermore DM (1995) Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584PubMedPubMedCentralGoogle Scholar
  81. Manire GP, Tamura A (1967) Preparation and chemical composition of the cell walls of mature infectious dense forms of meningopneumonitis organisms. J Bacteriol 94:1178–1183PubMedPubMedCentralGoogle Scholar
  82. Matsumoto A (1979) Recent progress of electron microscopy in microbiology and its development in future: from a study of the obligate intracellular parasites, Chlamydia organisms. J Electron Microsc 28(Suppl):S57–S64Google Scholar
  83. Matsumoto A, Manire GP (1970) Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101:278–285PubMedPubMedCentralGoogle Scholar
  84. Matteï PJ, Neves D, Dessen A (2010) Bridging cell wall biosynthesis and bacterial morphogenesis. Curr Opin Struct Biol 20:749–755PubMedCrossRefGoogle Scholar
  85. Maurin M, Bryskier A, Raoult D (2002) Antibiotic susceptibilities of Parachlamydia acanthamoeba in amoebae. Antimicrob Agents Chemother 46:3065–3067PubMedPubMedCentralCrossRefGoogle Scholar
  86. Maxted WR (1953) The use of bacitracin for identifying group A haemolytic streptococci. J Clin Pathol 6:224–226PubMedPubMedCentralCrossRefGoogle Scholar
  87. McCoy AJ, Adams NE, Hudson AO et al (2006) L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci 103:17909–17914PubMedPubMedCentralCrossRefGoogle Scholar
  88. McCoy AJ, Maurelli AT (2006) Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14:70–77PubMedCrossRefGoogle Scholar
  89. McCoy AJ, Maurelli AT (2005) Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity. Mol Microbiol 57:41–52PubMedCrossRefGoogle Scholar
  90. McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-Acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185:1218–1228PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mehlitz A, Karunakaran K, Herweg JA et al (2014) The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell Microbiol 16:1224–1243PubMedCrossRefGoogle Scholar
  92. Michalopoulos AS, Livaditis IG, Gougoutas V (2011) The revival of fosfomycin. Int J Infect Dis 15:e732–e739PubMedCrossRefGoogle Scholar
  93. Miyagishima SY, Nakamura M, Uzuka A et al (2014) FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. Front Plant Sci 5:459PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mohammadi T, Breukink E (2014) The chlamydial anomaly clarified? ChemBioChem 15:1391–1392PubMedCrossRefGoogle Scholar
  95. Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190PubMedPubMedCentralGoogle Scholar
  96. Moulder JW (1993) Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2:87–99Google Scholar
  97. Moulder JW (1966) The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol 20:107–130PubMedPubMedCentralCrossRefGoogle Scholar
  98. Moulder JW, Novosel DL, Officer JE (1963) Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J Bacteriol 85:707–711PubMedPubMedCentralGoogle Scholar
  99. Nadesalingam J, Dodds AW, Reid KBM et al (2005) Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol 175:1785–1794PubMedCrossRefGoogle Scholar
  100. Nagarajan UM (2012) Immune recognition and host cell response during Chlamydia infection. In: Tan M, Bavoil PM (eds) Intracellular pathogens I: chlamydiales. ASM Press, Washington, DC, pp 217–239Google Scholar
  101. Nelson DE, Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182:1714–1721PubMedPubMedCentralCrossRefGoogle Scholar
  102. Newton GGF, Abraham EP (1950) Ayfivin and bacitracin: resolution of crude products into similar series of peptides. Biochem J 47:257–267PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nicholson TL, Olinger L, Chong K et al (2003) Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 185:3179–3189PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nunes A, Gomes JP (2014) Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol 23:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  106. O’Connell CM, Ionova IA, Quayle AJ et al (2006) Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions: evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 281:1652–1659PubMedPubMedCentralCrossRefGoogle Scholar
  107. Otten C, De Benedetti S, Gaballah A et al (2015) Co-solvents as stabilizing agents during heterologous overexpression in Escherichia coli—application to chlamydial penicillin-binding protein 6. PLoS ONE 10:e0122110PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ouellette SP, Karimova G, Subtil A et al (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85:164–178PubMedCrossRefGoogle Scholar
  109. Ouellette SP, Rueden KJ, Abdelrahman YM et al (2015) Identification and partial characterization of potential FtsL and FtsQ homologs of Chlamydia. Front Microbiol 6:1264PubMedPubMedCentralGoogle Scholar
  110. Ouellette SP, Rueden KJ, Gauliard E et al (2014) Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY. Front Microbiol 5:279PubMedPubMedCentralCrossRefGoogle Scholar
  111. Packiam M, Weinrick B, Jacobs WR et al (2015) Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc Natl Acad Sci USA 112:11660–11665PubMedPubMedCentralCrossRefGoogle Scholar
  112. Patin D, Bostock J, Blanot D et al (2009) Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE. J Bacteriol 191:7430–7435PubMedPubMedCentralCrossRefGoogle Scholar
  113. Patin D, Bostock J, Chopra I (2012) Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem. Arch Microbiol 194:505–512PubMedCrossRefGoogle Scholar
  114. Pavelka MS (2007) Another brick in the wall. Trends Microbiol 15:147–149PubMedCrossRefGoogle Scholar
  115. Perkins HR, Allison AC (1963) Cell-wall constituents of rickettsiae and psittacosis-lymphogranuloma organisms. J Gen Microbiol 30:469–480PubMedCrossRefGoogle Scholar
  116. Phillips-Campbell R, Kintner J, Schoborg RV (2014) Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. Antimicrob Agents Chemother 58:1782–1784PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pilhofer M, Aistleitner K, Biboy J et al (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 4:2856PubMedCrossRefGoogle Scholar
  118. Porter E, Yang H, Yavagal S et al (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73:4823–4833PubMedPubMedCentralCrossRefGoogle Scholar
  119. Price NP, Momany FA (2005) Modeling bacterial UDP-HexNAc: Polyprenol-P HexNAc-1-P transferases. Glycobiology 15:29–42CrossRefGoogle Scholar
  120. Rantala A, Lajunen T, Juvonen R et al (2011) Low mannose-binding lectin levels and MBL2 gene polymorphisms associate with Chlamydia pneumoniae antibodies. Innate Immun 17:35–40PubMedCrossRefGoogle Scholar
  121. Ripa KT, Mårdh PA (1977) Cultivation of Chlamydia trachomatis in cycloheximide-treated mccoy cells. J Clin Microbiol 6:328–331PubMedPubMedCentralGoogle Scholar
  122. Rocaboy M, Herman R, Sauvage E et al (2013) The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol Microbiol 90:267–277PubMedGoogle Scholar
  123. Rogers HJ, Perkins HR, Ward JB (1980) Structure of peptidoglycan. In: Rogers H, Perkins H, Ward J (eds) Microbial cell walls and membranes. Springer, Netherlands, pp 190–214CrossRefGoogle Scholar
  124. Russell AD, Chopra I (1990) Understanding antibacterial action and resistance, 2nd edn. Ellis Horwood, ChichesterGoogle Scholar
  125. Satta G, Cornaglia G, Mazzariol A et al (1995) Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob Agents Chemother 39:812–818PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sauvage E, Derouaux A, Fraipont C et al (2014) Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE 9:e98042PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sauvage E, Kerff F, Terrak M et al (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258PubMedCrossRefGoogle Scholar
  128. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607PubMedPubMedCentralCrossRefGoogle Scholar
  129. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  130. Schneider T, Sahl HG (2010) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169PubMedCrossRefGoogle Scholar
  131. Siewert G, Strominger JL (1967) Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci USA 57:767–773PubMedPubMedCentralCrossRefGoogle Scholar
  132. Skilton RJ, Cutcliffen LT, Barlow D et al (2009) Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS ONE 4:e7723PubMedPubMedCentralCrossRefGoogle Scholar
  133. Slovak PM, Porter SL, Armitage JP (2006) Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J Bacteriol 188:1691–1700PubMedPubMedCentralCrossRefGoogle Scholar
  134. Spratt BG, Jobanputra V, Zimmermann W (1977) Binding of thienamycin and clavulanic acid to the penicillin-binding proteins of Escherichia coli K-12. Antimicrob Agents Chemother 12:406–409PubMedPubMedCentralCrossRefGoogle Scholar
  135. Stephens RS, Kalman S, Lammel C et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759PubMedPubMedCentralCrossRefGoogle Scholar
  136. Storey C, Chopra I (2001) Affinities of β-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities. Antimicrob Agents Chemother 45:303–305PubMedPubMedCentralCrossRefGoogle Scholar
  137. Strominger JL, Ito E, Threnn RH (1960) Competitive inhibition of enzymatic reactions by oxamycin. J Am Chem Soc 82:998–999CrossRefGoogle Scholar
  138. Subtil A, Collingro A, Horn M (2014) Tracing the primordial Chlamydiae: extinct parasites of plants? Trends Plant Sci 19:36–43PubMedCrossRefGoogle Scholar
  139. Sukhithasri V, Nisha N, Biswas L et al (2013) Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 168:396–406PubMedCrossRefGoogle Scholar
  140. Swanson AF, Ezekowitz RAB, Lee A et al (1998) Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect Immun 66:1607–1612PubMedPubMedCentralGoogle Scholar
  141. Tajima M, Samejima T, Yoshitoshi N (1959) Morphology of meningopneumonitis virus exposed to penicillin as observed with the electron microscope. J Bacteriol 77:23–34PubMedPubMedCentralGoogle Scholar
  142. Tamura A, Manire GP (1967) Preparation and chemical composition of the cell membranes of developmental reticulate forms of meningopneumonitis organisms. J Bacteriol 94:1184–1188PubMedPubMedCentralGoogle Scholar
  143. Tamura A, Matsumoto A, Manire GP et al (1971) Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci. J Bacteriol 105:355–360PubMedPubMedCentralGoogle Scholar
  144. Tatar LD, Marolda CL, Polischuk AN et al (2007) An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153:2518–2529PubMedCrossRefGoogle Scholar
  145. Taylor BD, Haggerty CL (2011) Management of Chlamydia trachomatis genital tract infection: screening and treatment challenges. Infect Drug Resist 4:19–29PubMedPubMedCentralCrossRefGoogle Scholar
  146. Taylor-Robinson D, Bébéar C (1997) Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J Antimicrob Chemother 40:622–630PubMedCrossRefGoogle Scholar
  147. Teh B, Grayson ML, Johnson PDR et al (2012) Doxycycline versus macrolides in combination therapy for treatment of community-acquired pneumonia. Clin Microbiol Infect 18:e71–e73PubMedCrossRefGoogle Scholar
  148. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137PubMedCrossRefGoogle Scholar
  149. Tydell CC, Yuan J, Tran P et al (2006) Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J Immunol 176:1154–1162PubMedCrossRefGoogle Scholar
  150. Typas A, Banzhaf M, Gross CA et al (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136CrossRefGoogle Scholar
  151. Uehara T, Bernhardt TG (2011) More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 14:698–703PubMedPubMedCentralCrossRefGoogle Scholar
  152. Uehara T, Parzych KR, Dinh T et al (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422PubMedPubMedCentralCrossRefGoogle Scholar
  153. van der Ploeg R, Verheul J, Vischer NOE et al (2013) Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli. Mol Microbiol 87:1074–1087PubMedCrossRefGoogle Scholar
  154. van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519PubMedCrossRefGoogle Scholar
  155. Vanrompay D, Ducatelle R, Haesebrouck F (1995) Chlamydia psittaci infections: a review with emphasis on avian chlamydiosis. Vet Microbiol 45:93–119PubMedCrossRefGoogle Scholar
  156. Vats P, Rothfield L (2007) Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci USA 104:17795–17800PubMedPubMedCentralCrossRefGoogle Scholar
  157. Vats P, Shih YL, Rothfield L (2009) Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol Microbiol 72:170–182PubMedCrossRefGoogle Scholar
  158. Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734PubMedCrossRefGoogle Scholar
  159. Vollmer W, Joris B, Charlier P et al (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286PubMedCrossRefGoogle Scholar
  160. Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70PubMedCrossRefGoogle Scholar
  161. Walsh M, Kappus EW, Quinn TC (1987) In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. Antimicrob Agents Chemother 31:811–812PubMedPubMedCentralCrossRefGoogle Scholar
  162. Weiss E (1950) The effect of antibiotics on agents of the psittacosis-lymphogranuloma group: I. The effect of penicillin. J Infect Dis 87:249–263PubMedCrossRefGoogle Scholar
  163. Welsh LE, Gaydos CA, Quinn TC (1992) In vitro evaluation of activities of azithromycin, erythromycin, and tetracycline against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrob Agents Chemother 36:291–294PubMedPubMedCentralCrossRefGoogle Scholar
  164. Welter-Stahl L, Ojcius DM, Viala J et al (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8:1047–1057PubMedPubMedCentralCrossRefGoogle Scholar
  165. White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76:616–633PubMedCrossRefGoogle Scholar
  166. Wilmes M, Sahl HG (2014) Defensin-based anti-infective strategies. Int J Med Microbiol 304:93–99PubMedCrossRefGoogle Scholar
  167. Wright HR, Turner A, Taylor HR (2008) Trachoma. Lancet 371:1945–1954CrossRefPubMedGoogle Scholar
  168. Wyrick PB (2010) Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis 201(Suppl 2):S88–S95PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wyrick PB, Knight ST (2004) Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother 54:79–85PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yahashiri A, Jorgenson MA, Weiss DS (2015) Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proc Natl Acad Sci USA 112:11347–11352PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yang DC, Peters NT, Parzych KR et al (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:e1052–e1060PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yang DC, Tan K, Joachimiak A et al (2012) A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 85:768–781PubMedPubMedCentralCrossRefGoogle Scholar
  173. Young KD (2014) Microbiology. A flipping cell wall ferry. Science 345:139–140PubMedCrossRefGoogle Scholar
  174. Zahar JR, Lortholary O, Martin C et al (2009) Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 10:172–180PubMedGoogle Scholar
  175. Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna Klöckner
    • 1
  • Henrike Bühl
    • 1
  • Patrick Viollier
    • 2
  • Beate Henrichfreise
    • 1
    Email author
  1. 1.Institute for Pharmaceutical MicrobiologyUniversity of BonnBonnGermany
  2. 2.Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics in Geneva (IGE3), University of GenevaGenevaSwitzerland

Personalised recommendations