Skip to main content

Actin-Dependent Regulation of Borrelia burgdorferi Phagocytosis by Macrophages

  • Chapter
  • First Online:
The Actin Cytoskeleton and Bacterial Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 399))

Abstract

The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting primarily skin, nervous system, and joints. If an infection with Borrelia proceeds unchecked, the disease can also enter a chronic stage, leading to the development of neuroborreliosis or cardiac arrhythmia. Successful elimination of B. burgdorferi by the host immune system is thus decisive for the positive outcome of a respective infection. Accordingly, host immune cells such as macrophages and dendritic cells have to be able to efficiently internalize and degrade infecting spirochetes. These processes are based on closely controlled rearrangements of the actin cytoskeleton, which enables the spatiotemporally fine-tuned formation of cellular protrusions and compartments that assist in the capturing, immobilization, and uptake of borreliae, as well as their further intracellular processing. Here, we discuss actin-based structures, in particular filopodia and coiling pseudopods that are involved in phagocytosis of B. burgdorferi by macrophages, their regulation by actin-associated proteins such as formins and Arp2/3 complex, as well as the subsequent intracellular processing of borreliae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberer E, Duray PH (1991) Morphology Of Borrelia burgdorferi: structural patterns of cultured Borreliae in relation to staining methods. J Clin Microbiol 29:764–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguero-Rosenfeld ME, Wormser GP (2015) Lyme disease: diagnostic issues and controversies. Expert Rev Mol Diagn 15:1–4

    Article  CAS  PubMed  Google Scholar 

  • Amann KJ, Pollard TD (2001) The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol 3:306–310

    Article  CAS  PubMed  Google Scholar 

  • Benach JL, Fleit HB, Habicht GS, Coleman JL, Bosler EM, Lane BP (1984) Interactions of phagocytes with the lyme disease spirochete: role of the Fc receptor. J Infect Dis 150:497–507

    Article  CAS  PubMed  Google Scholar 

  • Berende A, Oosting M, Kullberg BJ, Netea MG, Joosten LA (2010) Activation of innate host defense mechanisms by Borrelia. Eur Cytokine Netw 21:7–18

    CAS  PubMed  Google Scholar 

  • Berndtson K (2013) Review of evidence for immune evasion and persistent infection in lyme disease. Int J Gen Med 6:291–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohnert KA, Willet AH, Kovar DR, Gould KL (2013) Formin-based control of the actin cytoskeleton during cytokinesis. Biochem Soc Trans 41:1750–1754

    Article  CAS  PubMed  Google Scholar 

  • Borgermans L, Goderis G, Vandevoorde J, Devroey D (2014) Relevance of chronic lyme disease to family medicine as a complex multidimensional chronic disease construct: a systematic review. Int J Family Med 2014:138016

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease-A tick-borne spirochetosis? Science 216:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Carrasco SE, Troxell B, Yang Y, Brandt SL, Li H, Sandusky GE, Condon KW, Serezani CH, Yang XF (2015) Outer surface protein Ospc is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun 83:4848–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinco M, Murgia R, Presani G, Perticarari S (1997) Integrin Cr3 mediates the binding of nonspecifically opsonized Borrelia burgdorferi to human phagocytes and mammalian cells. Infect Immun 65:4784–4789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer LP (1999) Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Duleh SN, Welch MD (2010) Wash and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton (Hoboken) 67:193–206

    CAS  Google Scholar 

  • Duray PH (1989) Histopathology of clinical phases of human lyme disease. Rheum Dis Clin North Am 15:691–710

    CAS  PubMed  Google Scholar 

  • Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S, Phillippi-Falkenstein KM, Purcell JE, Ratterree MS, Philipp MT (2012) Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE 7:E29914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esue O, Harris ES, Higgs HN, Wirtz D (2008) The filamentous actin cross-linking/bundling activity of mammalian formins. J Mol Biol 384:324–334

    Article  CAS  PubMed  Google Scholar 

  • Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33:397–405

    Article  CAS  PubMed  Google Scholar 

  • Filgueira L, Nestle FO, Rittig M, Joller HI, Groscurth P (1996) Human dendritic cells phagocytose and process Borrelia burgdorferi. J Immunol 157:2998–3005

    CAS  PubMed  Google Scholar 

  • Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S (2010) Dynamic macrophage “Probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, Van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, Mcdonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    Article  CAS  PubMed  Google Scholar 

  • Garcia RC, Murgia R, Cinco M (2005) Complement receptor 3 binds the Borrelia burgdorferi outer surface proteins Ospa and Ospb in an Ic3b-independent manner. Infect Immun 73:6138–6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautreau A, Oguievetskaia K, Ungermann C (2014) Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol 6

    Google Scholar 

  • Goldstein SF, Charon NW, Kreiling JA (1994) Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc Natl Acad Sci USA 91:3433–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grikscheit K, Grosse R (2016) Formins at the junction. Trends Biochem Sci 41:148–159

    Article  CAS  PubMed  Google Scholar 

  • Harris ES, Li F, Higgs HN (2004) The mouse formin, frlalpha, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J Biol Chem 279:20076–20087

    Article  CAS  PubMed  Google Scholar 

  • Hawley KL, Olson CM Jr, Iglesias-Pedraz JM, Navasa N, Cervantes JL, Caimano MJ, Izadi H, Ingalls RR, Pal U, Salazar JC, Radolf JD, Anguita J (2012) Cd14 cooperates with complement receptor 3 to mediate Myd88-independent phagocytosis of Borrelia burgdorferi. Proc Natl Acad Sci U S A 109:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hechemy KE, Samsonoff WA, Harris HL, Mckee M (1992) Adherence and entry of Borrelia burgdorferi in vero cells. J Med Microbiol 36:229–238

    Article  CAS  PubMed  Google Scholar 

  • Heidemann SR, Lamoureux P, Buxbaum RE (1990) Growth cone behavior and production of traction force. J Cell Biol 111:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Higgs HN (2005) Formin proteins: a domain-based approach. Trends Biochem Sci 30:342–353

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AK, Naj X, Linder S (2014) Daam1 is a regulator of filopodia formation and phagocytic uptake of Borrelia burgdorferi by primary human macrophages. Faseb J 28:3075–3089

    Article  CAS  PubMed  Google Scholar 

  • Hoffman W, Lakkis FG, Chalasani G (2016) B cells, antibodies, and more. Clin J Am Soc Nephrol 11:137–154

    Article  CAS  PubMed  Google Scholar 

  • Horwitz MA (1984) Phagocytosis of the legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36:27–33

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CS, Macatonia SE, O’garra A, Murphy KM (1993a) Pathogen-induced Th1 phenotype development in Cd4+ alpha beta-Tcr transgenic T cells is macrophage dependent. Int Immunol 5:371–382

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’garra A, Murphy KM (1993b) Development of Th1 Cd4+ T cells through Il-12 produced by listeria-induced macrophages. Science 260:547–549

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung AH, Novick PJ (2011) Role of rab Gtpases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionescu MD, Ionescu AD, Hristescu S, Ionescu M, Orasanu M, Coman N (1997) Interactions between Borrelia burgdorferi and eukaryote cells: comparative ultrastructural aspects. Roum Arch Microbiol Immunol 56:77–96

    CAS  PubMed  Google Scholar 

  • Jaiswal R, Breitsprecher D, Collins A, Correa IR Jr, Xu MQ, Goode BL (2013) The formin daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 23:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jares TM, Mathiason MA, Kowalski TJ (2014) Functional outcomes in patients with Borrelia burgdorferi reinfection. Ticks Tick Borne Dis 5:58–62

    Article  PubMed  Google Scholar 

  • Kahlert H, Grage-Griebenow E, Stuwe HT, Cromwell O, Fiebig H (2000) T cell reactivity with allergoids: influence of the type of Apc. J Immunol 165:1807–1815

    Article  CAS  PubMed  Google Scholar 

  • Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104:11633–11638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn S, Geyer M (2014) Formins as effector proteins of Rho Gtpases. Small Gtpases 5:E29513

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Ristow LC, Shi M, Mukherjee P, Caine JA, Lee WY, Kubes P, Coburn J, Chaconas G (2015) Intravital imaging of vascular transmigration by the lyme spirochete: requirement for the integrin binding residues of the B. burgdorferi P66 protein. PLoS Pathog 11:E1005333

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane RS, Piesman J, Burgdorfer W (1991) Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609

    Article  CAS  PubMed  Google Scholar 

  • Lawrenz MB, Wooten RM, Zachary JF, Drouin SM, Weis JJ, Wetsel RA, Norris SJ (2003) Effect of complement component C3 deficiency on experimental Lyme borreliosis in mice. Infect Immun 71:4432–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Higgs HN (2003) The mouse formin mdia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Li C, Motaleb A, Sal M, Goldstein SF, Charon NW (2000) Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2:345–354

    CAS  PubMed  Google Scholar 

  • Linder S, Heimerl C, Fingerle V, Aepfelbacher M, Wilske B (2001) Coiling phagocytosis of Borrelia burgdorferi by primary human macrophages is controlled by Cdc42hs and Rac1 and involves recruitment of Wiskott-Aldrich syndrome protein and Arp2/3 complex. Infect Immun 69:1739–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Montgomery RR, Barthold SW, Bockenstedt LK (2004) Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice. Infect Immun 72:3195–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Vollmer SA, Ogden NH, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11:1545–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  • Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803:191–200

    Article  CAS  PubMed  Google Scholar 

  • Michl J, Pieczonka MM, Unkeless JC, Bell GI, Silverstein SC (1983) Fc receptor modulation in mononuclear phagocytes maintained on immobilized immune complexes occurs by diffusion of the receptor molecule. J Exp Med 157:2121–2139

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RR, Nathanson MH, Malawista SE (1994) Fc- and Non-Fc-mediated phagocytosis of Borrelia burgdorferi by macrophages. J Infect Dis 170:890–893

    Article  CAS  PubMed  Google Scholar 

  • Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the Lyme Disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4:E1000090

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullins RD (2000) How Wasp-family proteins and the Arp2/3 complex convert intracellular signals into cytoskeletal structures. Curr Opin Cell Biol 12:91–96

    Article  CAS  PubMed  Google Scholar 

  • Naj X, Linder S (2015) Er-coordinated activities of Rab22a and Rab5a drive phagosomal compaction and intracellular processing of Borrelia burgdorferi by macrophages. Cell Rep 12:1816–1830

    Article  CAS  PubMed  Google Scholar 

  • Naj X, Hoffmann AK, Himmel M, Linder S (2013) The formins Fmnl1 and Mdia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 81:1683–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson S (2014) Recognising and understanding Lyme Disease. Nurs Stand 29:37–43

    Article  PubMed  Google Scholar 

  • Petzke M, Schwartz I (2015) Borrelia burgdorferi pathogenesis and the immune response. Clin Lab Med 35:745–764

    Article  PubMed  Google Scholar 

  • Rechnitzer C, Blom J (1989) Engulfment of the philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with other Legionella strains and species. Apmis 97:105–114

    Article  CAS  PubMed  Google Scholar 

  • Rittig MG, Krause A, Haupl T, Schaible UE, Modolell M, Kramer MD, Lutjen-Drecoll E, Simon MM, Burmester GR (1992) Coiling phagocytosis is the preferential phagocytic mechanism for Borrelia burgdorferi. Infect Immun 60:4205–4212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig MG, Burmester GR, Krause A (1998a) Coiling phagocytosis: when the zipper jams, the cup is deformed. Trends Microbiol 6:384–388

    Article  CAS  PubMed  Google Scholar 

  • Rittig MG, Jagoda JC, Wilske B, Murgia R, Cinco M, Repp R, Burmester GR, Krause A (1998b) Coiling phagocytosis discriminates between different spirochetes and is enhanced by Phorbol Myristate acetate and granulocyte-macrophage colony-stimulating factor. Infect Immun 66:627–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig MG, Schroppel K, Seack KH, Sander U, N’diaye EN, Maridonneau-Parini I, Solbach W, Bogdan C (1998c) Coiling phagocytosis of trypanosomatids and fungal cells. Infect Immun 66:4331–4339

    Google Scholar 

  • Romero S, Grompone G, Carayol N, Mounier J, Guadagnini S, Prevost MC, Sansonetti PJ, Van Nhieu GT (2011) Atp-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes shigella invasion of epithelial cells. Cell Host Microbe 9:508–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) Er contact sites define the position and timing of endosome fission. Cell 159:1027–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar JC, Pope CD, Sellati TJ, Feder HM Jr, Kiely TG, Dardick KR, Buckman RL, Moore MW, Caimano MJ, Pope JG, Krause PJ, Radolf JD (2003) Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. J Immunol 171:2660–2670

    Article  CAS  PubMed  Google Scholar 

  • Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ, Velez-Climent L, Shupe J, Krueger W, Radolf JD (2009) Activation of human monocytes by live Borrelia burgdorferi generates Tlr2-dependent and -independent responses which include induction of Ifn-Beta. PLoS Pathog 5:E1000444

    Article  PubMed  PubMed Central  Google Scholar 

  • Schonichen A, Geyer M (2010) Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta 1803:152–163

    Article  PubMed  Google Scholar 

  • Shin OS, Miller LS, Modlin RL, Akira S, Uematsu S, Hu LT (2009) Downstream signals for Myd88-mediated phagocytosis of Borrelia burgdorferi can be initiated by Trif and are dependent on Pi3k. J Immunol 183:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LM, May RC (2013) Mechanisms of microbial escape from phagocyte killing. Biochem Soc Trans 41:475–490

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, Steele FM (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum 20:7–17

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, Sigal LH, Spieler PN, Stenn KS, Malawista SE (1983) The early clinical manifestations of Lyme Disease. Ann Intern Med 99:76–82

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme Disease. J Clin Invest 113:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of Rab5 Gtpase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker RB, Johnson L (2013) Borrelia burgdorferi aggrecanase activity: more evidence for persistent infection in Lyme Disease. Front Cell Infect Microbiol 3:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unanue ER, Askonas BA (1968) The immune response of mice to antigen in macrophages. Immunology 15:287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonna L, Wiedemann A, Aepfelbacher M, Sackmann E (2007) Micromechanics of filopodia mediated capture of pathogens by macrophages. Eur Biophys J 36:145–151

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ma Y, Buyuk A, Mcclain S, Weis JJ, Schwartz I (2004) Impaired host defense to infection and toll-like receptor 2-independent killing of Borrelia burgdorferi clinical isolates in Tlr2-deficient C3h/Hej mice. FEMS Microbiol Lett 231:219–225

    Article  CAS  PubMed  Google Scholar 

  • Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strle F, Stanek G, Bockenstedt L, Fish D, Dumler JS, Nadelman RB (2006) The clinical assessment, treatment, and prevention of Lyme Disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the infectious diseases Society of America. Clin Infect Dis 43:1089–1134

    Article  PubMed  Google Scholar 

  • Young LE, Heimsath EG, Higgs HN (2015) Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol Biol Cell 26:4646–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajkowska J, Lewczuk P, Strle F, Stanek G (2012) Lyme borreliosis: from pathogenesis to diagnosis and treatment. Clin Dev Immunol 2012:231657

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziuzia Iu R, Efimova NS, Vorob’eva NN, Klitsunova NV, Gosteva VV (1999) Clinical and morphological characteristics of migrating erythema in patients with ixodes tick-borne Lyme Disease. Med Parazitol (Mosk) 36–41

    Google Scholar 

Download references

Acknowledgements

We apologize to all whose work was not mentioned owing to space limitations. We thank Mirko Himmel for help with figures, Andrea Mordhorst for expert technical assistance and Martin Aepfelbacher for continuous support. Work from the SL lab mentioned in this article has been supported by the Deutsche Forschungsgemeinschaft (SPP1464, GRK 1459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Linder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naj, X., Linder, S. (2016). Actin-Dependent Regulation of Borrelia burgdorferi Phagocytosis by Macrophages. In: Mannherz, H. (eds) The Actin Cytoskeleton and Bacterial Infection. Current Topics in Microbiology and Immunology, vol 399. Springer, Cham. https://doi.org/10.1007/82_2016_26

Download citation

Publish with us

Policies and ethics