Manipulation of the Host Cell Cytoskeleton by Chlamydia

  • Ana T. Nogueira
  • Antonio T. Pedrosa
  • Rey A. CarabeoEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 412)


Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.


  1. Al-Bassam J, Kim H, Brouhard G et al (2010) CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev Cell 19:245–258. doi: 10.1016/j.devcel.2010.07.016 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Younes HM, Brinkmann V, Meyer TF (2004) Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway. Infect Immun 72:4751–4762. doi: 10.1128/IAI.72.8.4751-4762.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Zeer MA, Al-Younes HM, Kerr M et al (2014) Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface. Mol Microbiol 94:1285–1297. doi: 10.1111/mmi.12829 CrossRefPubMedGoogle Scholar
  4. Alzhanov D, Barnes J, Hruby DE, Rockey DD (2004) Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. BMC Microbiol 4:24. doi: 10.1186/1471-2180-4-24 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bannantine JP, Rockey DD, Hackstadt T (1998) Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol Microbiol 28:1017–1026. doi: 10.1046/j.1365-2958.1998.00867.x CrossRefPubMedGoogle Scholar
  6. Beatty WL (2006) Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 119:350–359. doi: 10.1242/jcs.02733 CrossRefPubMedGoogle Scholar
  7. Beatty WL (2008) Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 76:2872–2881. doi: 10.1128/IAI.00129-08 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631. doi: 10.1016/S0092-8674(00)81037-5 CrossRefPubMedGoogle Scholar
  9. Benesch S, Polo S, Lai FPL et al (2005) N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 118:3103–3115. doi: 10.1242/jcs.02444 CrossRefPubMedGoogle Scholar
  10. Birkelund S, Johnsen H, Christiansen G (1994) Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect Immun 62:4900–4908PubMedPubMedCentralGoogle Scholar
  11. Biswas D, Itoh K, Sasakawa C (2000) Uptake pathways of clinical and healthy animal isolates of Campylobacter jejuni into INT-407 cells. FEMS Immunol Med Microbiol 29:203–211. doi: 10.1111/j.1574-695X.2000.tb01524.x CrossRefPubMedGoogle Scholar
  12. Boleti H, Benmerah A, Ojcius DM, et al (1999) Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. J Cell Sci 112 (Pt 1:1487–96)Google Scholar
  13. Bothe M, Dutow P, Pich A et al (2015) DXD motif-dependent and -independent effects of the Chlamydia trachomatis cytotoxin CT166. Toxins (Basel) 7:621–637. doi: 10.3390/toxins7020621 CrossRefGoogle Scholar
  14. Bullock HD, Hower S, Fields KA (2012) Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins. J Biol Chem 287:28078–28086. doi: 10.1074/jbc.M112.386904 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Campbell S, Richmond SJ, Yates P (1989a) The development of Chlamydia trachomatis inclusions within the host eukaryotic cell during interphase and mitosis. J Gen Microbiol 135:1153–1165. doi: 10.1099/00221287-135-5-1153 CrossRefPubMedGoogle Scholar
  16. Campbell S, Richmond SJ, Yates PS (1989b) The effect of Chlamydia trachomatis infection on the host cell cytoskeleton and membrane compartments. J Gen Microbiol 135:2379–2386. doi: 10.1099/00221287-135-9-2379 CrossRefPubMedGoogle Scholar
  17. Campellone KG, Webb NJ, Znameroski EA, Welch MD (2008) WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134:148–161. doi: 10.1016/j.cell.2008.05.032 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carabeo RA, Grieshaber SS, Fischer E, Hackstadt T (2002) Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells. 70:3793–3803. doi:  10.1128/IAI.70.7.3793
  19. Carabeo RA, Mead DJ, Hackstadt T (2003) Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 100:6771–6776. doi: 10.1073/pnas.1131289100 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carabeo RA, Grieshaber SS, Hasenkrug A et al (2004) Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic 5:418–425. doi: 10.1111/j.1398-9219.2004.00184.x CrossRefPubMedGoogle Scholar
  21. Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T (2007) Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol 9:2278–2288. doi: 10.1111/j.1462-5822.2007.00958.x CrossRefPubMedGoogle Scholar
  22. Carlson JH, Whitmire WM, Crane DD et al (2008) The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 76:2273–2283. doi: 10.1128/IAI.00102-08 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5:601–613. doi: 10.1038/nrm1438 CrossRefPubMedGoogle Scholar
  24. Chin E, Kirker K, Zuck M et al (2012) Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS ONE 7:e46949. doi: 10.1371/journal.pone.0046949 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Clausen JD, Christiansen G, Holst HU, Birkelund S (1997) Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol Microbiol 25:441–449. doi: 10.1046/j.1365-2958.1997.4591832.x CrossRefPubMedGoogle Scholar
  26. Clifton DR, Fields KA, Grieshaber SS et al (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171. doi: 10.1073/pnas.0402829101 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Clifton DR, Dooley CA, Grieshaber SS et al (2005) Tyrosine phosphorylation of the chlamydial effector protein tarp is species specific and not required for recruitment of actin. Infect Immun 73:3860–3868. doi: 10.1128/IAI.73.7.3860-3868.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cole NB, Sciaky N, Marotta A et al (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coombes BK, Mahony JB (2002) Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 4:447–460. doi: 10.1046/j.1462-5822.2002.00203.x CrossRefPubMedGoogle Scholar
  30. de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274. doi: 10.1016/j.biocel.2011.11.009 CrossRefPubMedGoogle Scholar
  31. Delevoye C, Nilges M, Dautry-Varsat A, Subtil A (2004) Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. J Biol Chem 279:46896–46906. doi: 10.1074/jbc.M407227200 CrossRefPubMedGoogle Scholar
  32. Delevoye C, Nilges M, Dehoux P et al (2008) SNARE protein mimicry by an intracellular bacterium. PLoS Pathog 4:e1000022. doi: 10.1371/journal.ppat.1000022 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dennis MW, Storz J (1982) Infectivity of Chlamydia psittaci of bovine and ovine origins for cultured cells. Am J Vet Res 43:1897–1902PubMedGoogle Scholar
  34. Derré I, Pypaert M, Dautry-Varsat A, Agaisse H (2007) RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection. PLoS Pathog 3:1446–1458. doi: 10.1371/journal.ppat.0030155 CrossRefPubMedGoogle Scholar
  35. Derré I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092. doi: 10.1371/journal.ppat.1002092 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dong F, Su H, Huang Y et al (2004) Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun 72:3863–3868. doi: 10.1128/IAI.72.7.3863-3868.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Duleh SN, Welch MD (2010) WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskelet (Hoboken) 67:193–206. doi: 10.1002/cm.20437 CrossRefGoogle Scholar
  38. Dumoux M, Clare DK, Saibil HR, Hayward RD (2012) Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic 13:1612–1627. doi: 10.1111/tra.12002 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Elwell CA, Ceesay A, Kim JH et al (2008) RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 4:e1000021. doi: 10.1371/journal.ppat.1000021 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Escalante-Ochoa C, Ducatelle R, Charlier G et al (1999) Significance of host cell kinesin in the development of Chlamydia psittaci. Infect Immun 67:5441–5446PubMedPubMedCentralGoogle Scholar
  41. Fawaz FS, van Ooij C, Homola E et al (1997) Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect Immun 65:5301–5308PubMedPubMedCentralGoogle Scholar
  42. Geisler N, Schünemann J, Weber K (1992) Chemical cross-linking indicates a staggered and antiparallel protofilament of desmin intermediate filaments and characterizes one higher-level complex between protofilaments. Eur J Biochem 206:841–852CrossRefPubMedGoogle Scholar
  43. Grassart A, Cheng AT, Hong SH et al (2014) Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J Cell Biol 205:721–735. doi: 10.1083/jcb.201403041 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grieshaber SS, Grieshaber NA, Hackstadt T (2003) Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J Cell Sci 116:3793–3802. doi: 10.1242/jcs.00695 CrossRefPubMedGoogle Scholar
  45. Hackstadt T, Scidmore MA, Rockey DD (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92:4877–4881CrossRefPubMedGoogle Scholar
  46. Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER (1999) The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130. doi: 10.1046/j.1462-5822.1999.00012.x CrossRefPubMedGoogle Scholar
  48. Ho WC, Allan VJ, van Meer G et al (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263PubMedGoogle Scholar
  49. Honnappa S, Gouveia SM, Weisbrich A et al (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376. doi: 10.1016/j.cell.2009.04.065 CrossRefPubMedGoogle Scholar
  50. Howell B, Larsson N, Gullberg M, Cassimeris L (1999) Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 10:105–118CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA 104:11430–11435. doi: 10.1073/pnas.0703218104 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jewett TJ, Fischer ER, Mead DJ, Hackstadt T (2006) Chlamydial TARP is a bacterial nucleator of actin. Proc Natl Acad Sci USA 103:15599–15604. doi: 10.1073/pnas.0603044103 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jewett TJ, Miller NJ, Dooley CA, Hackstadt T (2010) The conserved Tarp actin binding domain is important for chlamydial invasion. PLoS Pathog 6:e1000997. doi: 10.1371/journal.ppat.1000997 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jiwani S, Ohr RJ, Fischer ER et al (2012) Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization. Biochem Biophys Res Commun 420:816–821. doi: 10.1016/j.bbrc.2012.03.080 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Johnston AB, Collins A, Goode BL (2015) High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat Cell Biol 17:1504–1511. doi: 10.1038/ncb3252 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kari L, Whitmire WM, Olivares-Zavaleta N et al (2011) A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 208:2217–2223. doi: 10.1084/jem.20111266 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kim SW, Ihn KS, Han SH et al (2001) Microtubule- and dynein-mediated movement of Orientia tsutsugamushi to the microtubule organizing center. Infect Immun 69:494–500. doi: 10.1128/IAI.69.1.494-500.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kim JH, Jiang S, Elwell CA, Engel JN (2011) Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 7:e1002285. doi: 10.1371/journal.ppat.1002285 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Koestler SA, Steffen A, Nemethova M et al (2013) Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin. Mol Biol Cell 24:2861–2875. doi: 10.1091/mbc.E12-12-0857 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Komarova Y, Lansbergen G, Galjart N et al (2005) EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol Biol Cell 16:5334–5345. doi: 10.1091/mbc.E05-07-0614 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Komarova Y, De Groot CO, Grigoriev I et al (2009) Mammalian end binding proteins control persistent microtubule growth. J Cell Biol 184:691–706. doi: 10.1083/jcb.200807179 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ku NO, Omary MB (1994) Identification of the major physiologic phosphorylation site of human keratin 18: potential kinases and a role in filament reorganization. J Cell Biol 127:161–171CrossRefPubMedGoogle Scholar
  63. Ku NO, Omary MB (1997) Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J Biol Chem 272:7556–7564CrossRefPubMedGoogle Scholar
  64. Kumar Y, Valdivia RH (2008) Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4:159–169. doi: 10.1016/j.chom.2008.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lane BJ, Mutchler C, Al Khodor S et al (2008) Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 4:e1000014CrossRefPubMedPubMedCentralGoogle Scholar
  66. Larsson N, Segerman B, Gradin HM et al (1999) Mutations of oncoprotein 18/stathmin identify tubulin-directed regulatory activities distinct from tubulin association. Mol Cell Biol 19:2242–2250CrossRefPubMedPubMedCentralGoogle Scholar
  67. Leube RE, Moch M, Windoffer R (2015) Intermediate filaments and the regulation of focal adhesion. Curr Opin Cell Biol 32:13–20. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  68. Lutter EI, Barger AC, Nair V, Hackstadt T (2013) Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep 3:1921–1931. doi: 10.1016/j.celrep.2013.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Maiato H, Khodjakov A, Rieder CL (2005) Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol 7:42–47. doi: 10.1038/ncb1207 CrossRefPubMedGoogle Scholar
  70. Majeed M, Kihlström E (1991) Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells. Infect Immun 59:4465–4472PubMedPubMedCentralGoogle Scholar
  71. Matsumoto A, Bessho H, Uehira K, Suda T (1991) Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J Electron Microsc (Tokyo) 40:356–363Google Scholar
  72. Mennella V, Rogers GC, Rogers SL et al (2005) Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol 7:235–245. doi: 10.1038/ncb1222 CrossRefPubMedGoogle Scholar
  73. Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96. doi: 10.1038/34208 CrossRefPubMedGoogle Scholar
  74. Mital J, Lutter EI, Barger AC et al (2015) Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochem Biophys Res Commun 462:165–170. doi: 10.1016/j.bbrc.2015.04.116 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mölleken K, Becker E, Hegemann JH (2013) The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry. PLoS Pathog 9:e1003325. doi: 10.1371/journal.ppat.1003325 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nakagawa H, Miki H, Ito M et al (2001) N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. J Cell Sci 114:1555–1565PubMedGoogle Scholar
  77. Newton CN, Wagenbach M, Ovechkina Y et al (2004) MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro. FEBS Lett 572:80–84. doi: 10.1016/j.febslet.2004.06.093 CrossRefPubMedGoogle Scholar
  78. Oelschlaeger TA, Guerry P, Kopecko DJ (1993) Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci USA 90:6884–6888CrossRefPubMedGoogle Scholar
  79. Oguchi Y, Uchimura S, Ohki T et al (2011) The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nat Cell Biol 13:846–852. doi: 10.1038/ncb2256 CrossRefPubMedGoogle Scholar
  80. Ouellette SP, Dorsey FC, Moshiach S et al (2011) Chlamydia species-dependent differences in the growth requirement for lysosomes. PLoS ONE 6:e16783. doi: 10.1371/journal.pone.0016783 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Paramio JM, Casanova ML, Alonso A, Jorcano JL (1997) Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. J Cell Sci 110 (Pt 9:1099–111)Google Scholar
  82. Paumet F, Wesolowski J, Garcia-Diaz A et al (2009) Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS ONE 4:e7375. doi: 10.1371/journal.pone.0007375 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Perfettini J-L, Hospital V, Stahl L et al (2003) Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie 85:763–769CrossRefPubMedGoogle Scholar
  84. Peris L (2006) Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 174:839–849. doi: 10.1083/jcb.200512058 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Peris L, Wagenbach M, Lafanechère L et al (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166. doi: 10.1083/jcb.200902142 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pizarro-Cerdá J, Kühbacher A, Cossart P (2015) Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta 1851:911–918. doi: 10.1016/j.bbalip.2014.09.011 CrossRefPubMedGoogle Scholar
  87. Pring M, Weber A, Bubb MR (1992) Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 31:1827–1836CrossRefPubMedGoogle Scholar
  88. Radhakrishnan GK, Splitter GA (2012) Modulation of host microtubule dynamics by pathogenic bacteria. Biomol Concepts. 3:571–580Google Scholar
  89. Richards TS, Knowlton AE, Grieshaber SS (2013) Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking. BMC Microbiol 13:185. doi: 10.1186/1471-2180-13-185 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Robertson DK, Gu L, Rowe RK, Beatty WL (2009) Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog 5:e1000664. doi: 10.1371/journal.ppat.1000664 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rockey DD, Heinzen RA, Hackstadt T (1995) Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol 15:617–626. doi: 10.1111/j.1365-2958.1995.tb02371.x CrossRefPubMedGoogle Scholar
  92. Rockey DD, Fischer ER, Hackstadt T (1996) Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun 64:4269–4278PubMedPubMedCentralGoogle Scholar
  93. Ronzone E, Paumet F (2013) Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. PLoS ONE 8:e69769. doi: 10.1371/journal.pone.0069769 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Savijoki K, Alvesalo J, Vuorela P et al (2008) Proteomic analysis of Chlamydia pneumoniae-infected HL cells reveals extensive degradation of cytoskeletal proteins. FEMS Immunol Med Microbiol 54:375–384. doi: 10.1111/j.1574-695X.2008.00488.x CrossRefPubMedGoogle Scholar
  95. Schaus TE, Taylor EW, Borisy GG (2007) Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc Natl Acad Sci USA 104:7086–7091. doi: 10.1073/pnas.0701943104 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schramm N, Wyrick PB (1995) Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect Immun 63:324–332PubMedPubMedCentralGoogle Scholar
  97. Song Y, Brady ST (2015) Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 25:125–136. doi: 10.1016/j.tcb.2014.10.004 CrossRefPubMedGoogle Scholar
  98. Song L, Carlson JH, Whitmire WM et al (2013) Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 81:636–644. doi: 10.1128/IAI.01305-12 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Stallmann S, Hegemann JH (2015) The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol. doi: 10.1111/cmi.12549 CrossRefGoogle Scholar
  100. Steinböck FA, Nikolic B, Coulombe PA, et al (2000) Dose-dependent linkage, assembly inhibition and disassembly of vimentin and cytokeratin 5/14 filaments through plectin’s intermediate filament-binding domain. J Cell Sci 113 (Pt 3:483–491)Google Scholar
  101. Subtil A, Wyplosz B, Balañá ME, Dautry-Varsat A (2004) Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J Cell Sci 117:3923–3933. doi: 10.1242/jcs.01247 CrossRefPubMedGoogle Scholar
  102. Suchland RJ, Rockey DD, Bannantine JP, Stamm WE (2000) Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68:360–367CrossRefPubMedPubMedCentralGoogle Scholar
  103. Suchland RJ, Sandoz KM, Jeffrey BM et al (2009) Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother 53:4604–4611. doi: 10.1128/AAC.00477-09 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Thalmann J, Janik K, May M et al (2010) Actin re-organization induced by Chlamydia trachomatis serovar D–evidence for a critical role of the effector protein CT166 targeting Rac. PLoS ONE 5:e9887. doi: 10.1371/journal.pone.0009887 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Thwaites T, Nogueira AT, Campeotto I et al (2014) The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion. J Biol Chem 289:30426–30442. doi: 10.1074/jbc.M114.604876 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA (2015) Vinculin interacts with the Chlamydia effector TarP Via a tripartite vinculin binding domain to mediate actin recruitment and assembly at the plasma membrane. Front Cell Infect Microbiol 5:88. doi: 10.3389/fcimb.2015.00088 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Thyberg J (1980) Internalization of cationized ferritin into the Golgi complex of cultured mouse peritoneal macrophages. Effects of colchicine and cytochalasin B. Eur J Cell Biol 23:95–103PubMedGoogle Scholar
  108. Todd WJ, Caldwell HD (1985) The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells. J Infect Dis 151:1037–1044CrossRefPubMedGoogle Scholar
  109. Traub P, Scherbarth A, Wiegers W, Shoeman RL (1992) Salt-stable interaction of the amino-terminal head region of vimentin with the alpha-helical rod domain of cytoplasmic intermediate filament proteins and its relevance to protofilament structure and filament formation and stability. J Cell Sci 101 (Pt 2:363–381)Google Scholar
  110. Truong D, Copeland JW, Brumell JH (2014) Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. BioEssays 36:687–696. doi: 10.1002/bies.201400038 CrossRefPubMedGoogle Scholar
  111. Tsuruta D, Jones JCR (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci 116:4977–4984. doi: 10.1242/jcs.00823 CrossRefPubMedGoogle Scholar
  112. Van Ooij C, Homola E, Kincaid E, Engel J (1998) Fusion of Chlamydia trachomatis-containing inclusions is inhibited at low temperatures and requires bacterial protein synthesis. Infect Immun 66:5364–5371PubMedPubMedCentralGoogle Scholar
  113. Volceanov L, Herbst K, Biniossek M et al (2014) Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion. MBio 5:e01802–e01814. doi: 10.1128/mBio.01802-14 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Wanger M, Wegner A (1985) Equilibrium constant for binding of an actin filament capping protein to the barbed end of actin filaments. Biochemistry 24:1035–1040CrossRefPubMedGoogle Scholar
  115. Wagner OI, Rammensee S, Korde N et al (2007) Softness, strength and self-repair in intermediate filament networks. Exp Cell Res 313:2228–2235. doi: 10.1016/j.yexcr.2007.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ward ME, Murray A (1984) Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J Gen Microbiol 130:1765–1780. doi: 10.1099/00221287-130-7-1765 CrossRefPubMedGoogle Scholar
  117. Weber MM, Noriea NF, Bauler LD et al (2016) A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J Bacteriol. doi: 10.1128/JB.00933-15 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wehland J, Henkart M, Klausner R, Sandoval IV (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci USA 80:4286–4290CrossRefPubMedGoogle Scholar
  119. Windoffer R, Kölsch A, Wöll S, Leube RE (2006) Focal adhesions are hotspots for keratin filament precursor formation. J Cell Biol 173:341–348. doi: 10.1083/jcb.200511124 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yang C, Starr T, Song L et al (2015) Chlamydial lytic exit from host cells is plasmid regulated. MBio 6:e01648–e01615. doi: 10.1128/mBio.01648-15 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Yu X, Zech T, McDonald L et al (2012) N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 199:527–544. doi: 10.1083/jcb.201203025 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana T. Nogueira
    • 1
  • Antonio T. Pedrosa
    • 1
  • Rey A. Carabeo
    • 1
    Email author
  1. 1.School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUSA

Personalised recommendations