Skip to main content

The Many Facets of Lipooligosaccharide as a Virulence Factor for Histophilus somni

  • Chapter
  • First Online:
Histophilus somni

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 396))

Abstract

The lipooligosaccharide (LOS) of Histophilus somni is a multifaceted molecule that provides critical protection to the bacterium against host defenses, may act as an adhesin, and like similar molecules of gram-negative bacteria, is an endotoxin that signals through toll-like receptor 4 and NF-κB to cause inflammation. The lipid A component is responsible for the endotoxic and apoptotic activity of the LOS. The H. somni LOS lacks O-side chains typically characteristic of gram-negative bacteria that have lipopolysaccharide, but has a complex, microheterogeneous outer core. The LOS of disease isolates is capable of undergoing structural and antigenic phase variation of its outer core due to slip-strand mispairing of glycosyltransferase genes that contain repetitive sequences of DNA base pairs. Such variation enables the bacteria to evade bactericidal antibodies made to oligosaccharide antigens. In addition, the LOS can be decorated with phase-variable phosphorylcholine (ChoP), which binds to platelet-activating factor receptor on host cells, thereby aiding in colonization of the upper respiratory tract. However, ChoP is likely not expressed when the bacteria are in systemic sites because ChoP also binds to C-reactive protein, resulting in activation of host complement and promoting bactericidal activity. The structure of some LOS outer core chains is identical to oligosaccharides on host glycosphingolipids of red blood cells, other cells, and merconium (lacto-N-neotetraose, lacto-N-biose, N-acetyllactosamine, etc.). Furthermore, terminal galactose residues on LOS and elsewhere are decorated with sialic acid, which blocks antibody binding, activation of complement, phagocytosis, and intracellular killing. Therefore, antigenic mimicry of host antigens is an important defense mechanism provided by the oligosaccharide component of the LOS to avoid innate and adaptive host defense mechanisms. However, some strains of H. somni isolated from the bovine genital tract, particularly the normal bovine prepuce, are incapable of LOS phase variation, sialylation of the LOS, and expression of ChoP. At least 1 such strain has been shown to be avirulent, underscoring the importance of the LOS as a virulence factor, although this strain is deficient in other factors as well. The structure and arrangement of the inner core glycoses (heptose and 3-deoxy-D-manno-2-octulosnic acid) is remarkably similar to the inner core oligosaccharide on some strains of Neisseria spp., and mutants that contain a truncated LOS oligosaccharide are considerably more serum-sensitive than the parent strain. Therefore, the LOS is a critical component that enables H. somni to resist host defenses and cause disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    CAS  PubMed  Google Scholar 

  • Apicella MA (2012) Nontypeable Haemophilus influenzae: the role of N-acetyl-5-neuraminic acid in biology. Front Cell Infect Microbiol 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton GM, Pasare C, Medzhitov R (2004) Toll-Like Receptors and Control of Adaptive Immunity. In: Kaufmann SHE, Medzhitov R, Gordon S (eds) The innate imune response to infection. ASM Press, Washington, D.C., pp 271–285

    Chapter  Google Scholar 

  • Berrington AW, Tan YC, Srikhanta Y, Kuipers B, van der Ley P, Peak IR, Jennings MP (2002) Phase variation in meningococcal lipooligosaccharide biosynthesis genes. FEMS Immunol Med Microbiol 34:267–275

    Article  CAS  PubMed  Google Scholar 

  • Clark SE, Weiser JN (2013) Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect Immun 81:392–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbeil LB, Blau K, Prieur DJ, Ward ACS (1985) Serum susceptibility of Haemophilus somnus from bovine clinical cases and carriers. J Clin Microbiol 22:192–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Howard MD, Brisson J-R, Van Der Zwan M, Thibault P, Perry MB, Inzana TJ (1998) Structural analysis of the phase-variable lipooligosaccharide from Haemophilus somnus strain 738. Eur J Biochem 253:507–516

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Hood DW, Martin A, Makepeace KM, Deadman ME, Li J, Brisson JR, Moxon ER, Richards JC (2002) Identification and structural characterization of a sialylated lacto-N-neotetraose structure in the lipopolysaccharide of Haemophilus influenzae. Eur J Biochem 269:4009–4019

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Howard MD, Inzana TJ (2003) Structural analysis of the lipooligosaccharide from the commensal Haemophilus somnus strain 1P. Carbohydr Res 338:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Darveau RP, Hancock RE (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 155:831–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elswaifi SF, St Michael F, Sreenivas A, Cox A, Carman GM, Inzana TJ (2009) Molecular characterization of phosphorylcholine expression on the lipooligosaccharide of Histophilus somni. Microb Pathog 47:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elswaifi SF, Scarratt WK, Inzana TJ (2012) The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of Histophilus somni in cattle. Vet Res 43:49

    Article  CAS  PubMed  Google Scholar 

  • Fox KL, Cox AD, Gilbert M, Wakarchuk WW, Li J, Makepeace K, Richards JC, Moxon ER, Hood DW (2006) Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem 281:40024–40032

    Article  CAS  PubMed  Google Scholar 

  • Galanos C, Lüderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249

    Article  CAS  PubMed  Google Scholar 

  • Gogolewski RP, Leathers CW, Liggitt HD, Corbeil LB (1987) Experimental Haemophilus somnus pneumonia in calves and immunoperoxidase localization of bacteria. Vet Pathol 24:250–256

    CAS  PubMed  Google Scholar 

  • High NJ, Jennings MP, Moxon ER (1996) Tandem repeats of the tetramer 5’-CAAT-3’ present in lic2A are required for phase variation but not lipopolysaccharide biosynthesis in Haemophilus influenzae. Mol Microbiol 20:165–174

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock PJ, Leive L, Mälelä PH, Rietschel ET, Strittmatter W, Morrison DC (1986) Lipopolysaccharide nomenclature-past, present, and future. J Bacteriol 166:699–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holst O (1999) Chemical structure of the core region of lipopolysaccharides. In: Brade H (ed) Endotoxin in health and disease. Marcel Dekker, New York, pp 305–330

    Google Scholar 

  • Howard MD, Cox AD, Weiser JN, Schurig GG, Inzana TJ (2000) Antigenic diversity of Haemophilus somnus lipooligosaccharide: phase-variable accessibility of the phosphorylcholine epitope. J Clin Microbiol 38:4412–4419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard MD, Willis L, Wakarchuk W, St Michael F, Cox A, Horne WT, Hontecillas R, Bassaganya-Riera J, Lorenz E, Inzana TJ (2011) Genetics and molecular specificity of sialylation of Histophilus somni lipooligosaccharide (LOS) and the effect of LOS sialylation on Toll-like receptor-4 signaling. Vet Microbiol 153:163–172

    Article  CAS  PubMed  Google Scholar 

  • Inzana TJ, Apicella MA (1999) Use of a bilayer stacking gel to improve resolution of lipopolysaccharides and lipooligosaccharides in polyacrylamide gels. Electrophoresis 20:462–465

    Article  CAS  PubMed  Google Scholar 

  • Inzana TJ, Todd J (1992) Immune response of cattle to an Haemophilus somnus lipid A-protein conjugate vaccine and efficacy in a mouse model. Am J Vet Res 53:175–179

    CAS  PubMed  Google Scholar 

  • Inzana TJ, Seifert WE Jr, Williams RP (1985) Composition and antigenic activity of the oligosaccharide moiety of Haemophilus influenzae type b lipooligosaccharide. Infect Immun 48:324–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inzana TJ, Iritani B, Gogolewski RP, Kania SA, Corbeil LB (1988) Purification and characterization of lipooligosaccharides from four strains of “Haemophilus somnus”. Infect Immun 56:2830–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inzana TJ, Gogolewski RP, Corbeil LB (1992) Phenotypic phase variation in Haemophilus somnus lipooligosaccharide during bovine pneumonia and after in vitro passage. Infect Immun 60:2943–2951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inzana TJ, Hensley J, McQuiston J, Lesse AJ, Campagnari AA, Boyle SM, Apicella MA (1997) Phase variation and conservation of lipooligosaccharide epitopes in Haemophilus somnus. Infect Immun 65:4675–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inzana TJ, Glindemann G, Cox AD, Wakarchuk W, Howard MD (2002) Incorporation of N-acetylneuraminic acid into Haemophilus somnus lipooligosaccharide (LOS): enhancement of resistance to serum and reduction of LOS antibody binding. Infect Immun 70:4870–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inzana TJ, Balyan R, Howard MD (2012) Decoration of Histophilus somni lipooligosaccharide with N-acetyl-5-neuraminic acid enhances bacterial binding of complement factor H and resistance to killing by serum and polymorphonuclear leukocytes. Vet Microbiol 161:113–121

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG (1993) Isolation and purification of lipopolysaccharides. In: BeMiller JNaRLW (ed) Methods in Carbohydrate Chemistry. Vol IX. Wiley, New York, pp 3–10

    Google Scholar 

  • Kuckleburg CJ, Elswaifi SF, Inzana TJ, Czuprynski CJ (2007) Expression of phosphorylcholine by Histophilus somni induces bovine platelet aggregation. Infect Immun 75:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Lysenko E, Richards JC, Cox AD, Stewart A, Martin A, Kapoor M, Weiser JN (2000) The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to C-reactive protein-mediated killing. Mol Microbiol 35:234–245

    Article  CAS  PubMed  Google Scholar 

  • Mandrell RE, Griffiss JM, Macher BA (1988) Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunologically similar to precursors of human blood group antigens. J Exp Med 168:107–126

    Article  CAS  PubMed  Google Scholar 

  • Maskell DJ, Szabo MJ, Butler PD, Williams AE, Moxon ER (1991) Phase variation of lipopolysaccharide in Haemophilus influenzae. Res Microbiol 142:719–724

    Article  CAS  PubMed  Google Scholar 

  • McQuiston JH, McQuiston JR, Cox AD, Wu Y, Boyle SM, Inzana TJ (2000) Characterization of a DNA region containing 5’-CAAT-3’ DNA sequences involved in lipooligosaccharide biosynthesis in Haemophilus somnus. Microb Pathogen 28:301–312

    Article  CAS  Google Scholar 

  • Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115

    Article  CAS  PubMed  Google Scholar 

  • Phillips NJ, Schilling B, McLendon MK, Apicella MA, Gibson BW (2004) Novel modification of lipid A of Francisella tularensis. Infect Immun 72:5340–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power PM, Sweetman WA, Gallacher NJ, Woodhall MR, Kumar GA, Moxon ER, Hood DW (2009) Simple sequence repeats in Haemophilus influenzae. Infect Genet Evol 9:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    Article  CAS  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rietschel ET, Wollenweber H-W, Brade H, Zähringer U, Linder B, Seydel U, Bradaczek H, Giesbrecht P (1984) Structure and conformation of th lipid A component of lipopolysaccharides. In: Rietschel ET (ed) Chemistry of endotoxin. Handbook of endotoxin, vol 1. Elsevier Science Publishers, New York, pp 187–220

    Google Scholar 

  • Sandal I, Inzana TJ, Molinaro A, De Castro C, Shao JQ, Apicella MA, Cox AD, St Michael F, Berg G (2011) Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation. BMC Microbiol 11:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddaramappa S, Challacombe JF, Duncan AJ, Gillaspy AF, Carson M, Gipson J, Orvis J, Zaitshik J, Barnes G, Bruce D, Chertkov O, Detter JC, Han CS, Tapia R, Thompson LS, Dyer DW, Inzana TJ (2011) Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses. BMC Genom 12:570

    Article  CAS  Google Scholar 

  • St Michael F, Howard MD, Li J, Duncan AJ, Inzana TJ, Cox AD (2004) Structural analysis of the lipooligosaccharide from the commensal Haemophilus somnus genome strain 129Pt. Carbohydr Res 339:529–535

    Article  CAS  PubMed  Google Scholar 

  • St Michael F, Li J, Howard MD, Duncan AJ, Inzana TJ, Cox AD (2005) Structural analysis of the oligosaccharide of Histophilus somni (Haemophilus somnus) strain 2336 and identification of several lipooligosaccharide biosynthesis gene homologues. Carbohydr Res 340:665–672

    Article  CAS  PubMed  Google Scholar 

  • St Michael F, Inzana TJ, Cox AD (2006) Structural analysis of the lipooligosaccharide-derived oligosaccharide of Histophilus somni (Haemophilus somnus) strain 8025. Carbohydr Res 341:281–284

    Article  CAS  PubMed  Google Scholar 

  • Swords WE, Buscher BA, Ver Steeg Ii K, Preston A, Nichols WA, Weiser JN, Gibson BW, Apicella MA (2000) Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol 37:13–27

    Article  CAS  PubMed  Google Scholar 

  • Sylte MJ, Corbeil LB, Inzana TJ, Czuprynski CJ (2001) Haemophilus somnus induces apoptosis in bovine endothelial cells in vitro. Infect Immun 69:1650–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CM, Jankowska-Stephens E, Mizanur RM, Cipollo JF (2009) The fine structure of Neisseria meningitidis lipooligosaccharide from the M986 strain and three of its variants. J Biol Chem 284:4616–4625

    Article  CAS  PubMed  Google Scholar 

  • Vimr E, Lichtensteiger C (2002) To sialylate, or not to sialylate: that is the question. Trends Microbiol 10:254–257

    Article  CAS  PubMed  Google Scholar 

  • Vimr E, Lichtensteiger C, Steenbergen S (2000) Sialic acid metabolism’s dual function in Haemophilus influenzae. Mol Microbiol 36:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Weiser JN, Shchepetov M, Chong ST (1997) Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect Immun 65:943–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser JN, Pan N, McGowan KL, Musher D, Martin A, Richards J (1998) Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield C, Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 35:135–246

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, McQuiston JH, Cox A, Pack TD, Inzana TJ (2000) Molecular cloning and mutagenesis of a DNA locus involved in lipooligosaccharide biosynthesis in Haemophilus somnus. Infect Immun 68:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Inzana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Inzana, T.J. (2015). The Many Facets of Lipooligosaccharide as a Virulence Factor for Histophilus somni . In: Inzana, T. (eds) Histophilus somni. Current Topics in Microbiology and Immunology, vol 396. Springer, Cham. https://doi.org/10.1007/82_2015_5020

Download citation

Publish with us

Policies and ethics