Skip to main content

Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation

  • Chapter
  • First Online:
Staphylococcus aureus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 409))

Abstract

Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMP:

Antimicrobial peptide

APC:

Antigen-presenting cell

Aur:

Aureolysin

Bov:

Bovine

CA-MRSA:

Community-acquired MRSA

CHIPS (chp):

Chemotaxis inhibitory protein of S. aureus

DARC:

Duffy antigen receptor for chemokines

EAP (eap):

Extracellular adherence protein

Ecb (ecb):

Extracellular complement-binding protein

Efb (efb):

Extracellular fibrinogen-binding protein

Egc (egc):

Enterotoxin gene cluster

Eq:

Equine

FLIPr (flipr):

FPR2 inhibitory protein

FPR:

Formyl peptide receptor

GPCR:

G-protein-coupled receptor

HLA:

Human leukocyte antigen

Hla (hla):

α-hemolysin

Hlb (hlb):

β-hemolysin

Hlg (hlg):

γ-hemolysin

IEC:

Immune evasion cluster

Ig:

Immunoglobulin

Luk (luk):

Leukocidin

mAb:

Monoclonal antibody

MAC:

Membrane attack complex

MGE:

Mobile genetic element

MHC-II:

Major histocompatibility complex II

MMP-9:

Matrix metalloproteinase 9

MRSA:

Methicillin-resistant Staphylococcus aureus

NET:

Neutrophil extracellular trap

NMR:

Nuclear magnetic resonance

NSP:

Neutrophil serine protease

OB:

Oligomer-binding

Ov:

Ovine

PSGL-1:

P-selection glycoprotein ligand-1

PSM (psm):

Phenol-soluble modulin

PVL (pvl):

Panton–Valentine leukocidin

SAg:

Superantigen

SAK (sak):

Staphylokinase

SaPI:

Staphylococcal pathogenicity island

Sbi (sbi):

Second immunoglobulin-binding protein

SC (coa):

Staphylocoagulase

SCC:

Staphylococcal cassette chromosome

SCIN (scn):

Staphylococcal complement inhibitor

SE (se):

Staphylococcal enterotoxin

SEl (sel):

Staphylococcal enterotoxin-like

SNase (nuc):

Staphylococcal nuclease

SpA (spa):

Staphylococcal protein A

SSL (ssl):

Superantigen-like protein

TCR:

T cell receptor

TLR:

Toll-like receptor

TSST-1 (tst):

Toxic shock syndrome toxin-1

vWbp (vwb):

Von Willebrand factor-binding protein

References

  • Aarestrup FM, Larsen HD, Eriksen NH et al (1999) Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin. A comparison between pheno- and genotype and variation in phenotypic expression. APMIS 107:425–430

    Article  CAS  PubMed  Google Scholar 

  • Abdelbary MMH, Wittenberg A, Cuny C et al (2014) Phylogenetic analysis of Staphylococcus aureus CC398 reveals a sub-lineage epidemiologically associated with infections in horses. PLoS ONE 9:e88083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adhikari RP, Ajao AO, Aman MJ et al (2012a) Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J Infect Dis 206:915–923

    Article  CAS  PubMed  Google Scholar 

  • Adhikari RP, Karauzum H, Sarwar J et al (2012b) Novel structurally designed vaccine for s. aureus α-hemolysin: protection against bacteremia and pneumonia. PLoS One 7:e38567

    Google Scholar 

  • Alibayov B, Zdenkova K, Sykorova H, Demnerova K (2014) Molecular analysis of Staphylococcus aureus pathogenicity islands (SaPI) and their superantigens combination of food samples. J Microbiol Methods 107:197–204

    Article  CAS  PubMed  Google Scholar 

  • Allegretti M, Moriconi A, Beccari AR et al (2005) Targeting C5a: recent advances in drug discovery. Curr Med Chem 12:217–236

    Article  CAS  PubMed  Google Scholar 

  • Alonzo F, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78:199–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonzo F, Kozhaya L, Rawlings SA et al (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493:51–55

    Article  PubMed  CAS  Google Scholar 

  • Anderson MJ, Lin Y-C, Gillman AN et al (2012) Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:1–10

    Article  CAS  Google Scholar 

  • Arbuthnott J (1970) Staphylococcal alpha toxin. Microbial Toxins 189–236

    Google Scholar 

  • Arcus V (2002) OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12:794–801

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PCJ, Hu H, Rivera J et al (2012) Staphylococcal superantigen-like protein 5 induces thrombotic and bleeding complications in vivo: Inhibition by an anti-SSL5 antibody and the glycan Bimosiamose. J Thromb Haemost 10:2607–2609

    Article  CAS  PubMed  Google Scholar 

  • Atkins KL, Burman JD, Chamberlain ES et al (2008) S. aureus IgG-binding proteins SpA and Sbi: Host specificity and mechanisms of immune complex formation. Mol Immunol 45:1600–1611

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Takeuchi F, Kuroda M et al (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Bae T, Schneewind O et al (2008) Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310

    Article  CAS  PubMed  Google Scholar 

  • Badarau A, Rouha H, Malafa S et al (2015) Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 290:142–156

    Article  CAS  PubMed  Google Scholar 

  • Baker HM, Basu I, Chung MC et al (2007) Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J Mol Biol 374:1298–1308

    Article  CAS  PubMed  Google Scholar 

  • Bardoel BW, Vos R, Bouman T et al (2012) Evasion of toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J Mol Med 90:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Barretti P, Montelli AC, Batalha JEN et al (2009) The role of virulence factors in the outcome of staphylococcal peritonitis in CAPD patients. BMC Infect Dis 9:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrio M, Rainard P, Prévost G (2006) LukM/LukF′-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. Microbes Infect 8:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Nicco E, Mikulska M (2009) Why is community-associated MRSA spreading across the world and how will it change clinical practice? Int J Antimicrob Agents 34:S15–S19

    Article  CAS  PubMed  Google Scholar 

  • Becker K, Friedrich AW, Lubritz G et al (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41:1434–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker REN, Berube BJ, Sampedro GR et al (2014a) Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin. J Innate Immun 6:619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker S, Frankel MB, Schneewind O, Missiakas D (2014b) Release of protein A from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci USA 111:1574–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berends ETM, Horswill AR, Haste NM et al (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berends ETM, Kuipers A, Ravesloot MM et al (2014) Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 38:1146–1171

    Article  CAS  PubMed  Google Scholar 

  • Berube BJ, Bubeck Wardenburg JB (2013) Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 5:1140–1166

    Article  Google Scholar 

  • Bestebroer J, Poppelier MJJG, Ulfman LH et al (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–2943

    CAS  PubMed  Google Scholar 

  • Bestebroer J, Van Kessel KPM, Azouagh H et al (2009) Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins. Blood 113:328–337

    Article  CAS  PubMed  Google Scholar 

  • Bestebroer J, Aerts PC, Rooijakkers SHM et al (2010) Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12:1506–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerketorp J, Nilsson M, Ljungh A et al (2002) A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Bjerketorp J, Jacobsson K, Frykberg L (2004) The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 234:309–314

    Article  CAS  PubMed  Google Scholar 

  • Boer JC, Domanska UM, Timmer-Bosscha H et al (2013) Inhibition of formyl peptide receptor in high-grade astrocytoma by chemotaxis inhibitory protein of S. aureus. Br J Cancer 108:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerhout E, Vrieling M, Benedictus L et al (2015) Immunization routes in cattle impact the levels and neutralizing capacity of antibodies induced against S. aureus immune evasion proteins. Vet Res 46:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunschoten A, Ippel JH, Kruijtzer JAW et al (2011) A peptide mimic of the chemotaxis inhibitory protein of Staphylococcus aureus: towards the development of novel anti-inflammatory compounds. Amino Acids 40:731–740

    Article  CAS  PubMed  Google Scholar 

  • Buonpane RA, Churchill HRO, Moza B et al (2007) Neutralization of staphylococcal enterotoxin B by soluble, high-affinity receptor antagonists. Nat Med 13:725–729

    Article  CAS  PubMed  Google Scholar 

  • Burman JD, Leung E, Atkins KL et al (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burroughs M, Balaji S, Iyer LM, Aravind L (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18

    Google Scholar 

  • Cheng AG, Kim HK, Burts ML et al (2009) Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23:3393–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AG, McAdow M, Kim HK et al (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheung GYC, Kretschmer D, Duong AC et al (2014a) Production of an attenuated phenol-soluble modulin variant unique to the MRSA clonal complex 30 increases severity of bloodstream infection. PLoS Pathog 10:e1004298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheung GYC, Kretschmer D, Queck SY et al (2014b) Insight into structure-function relationship in phenol-soluble modulins using an alanine screen of the phenol-soluble modulin (PSM) α3 peptide. FASEB J 28:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YW, Herman A, DiGiusto D et al (1990) Residues of the variable region of the T-cell-receptor beta-chain that interact with S. aureus toxin superantigens. Nature 346:471–473

    Article  CAS  PubMed  Google Scholar 

  • Chung MC, Wines BD, Baker H et al (2007) The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol Microbiol 66:1342–1355

    Article  CAS  PubMed  Google Scholar 

  • Cifrian E, Guidry AJ, Bramley AJ et al (1996) Effect of staphylococcal beta toxin on the cytotoxicity, proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells. Vet Microbiol 48:187–198

    Article  CAS  PubMed  Google Scholar 

  • Cinader B, Dubiski S, Wardlaw AC (1964) Distribution, inheritance, and properties of an antigen, MUB1, and its relation to hemolytic complement. J Exp Med 120:897–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney J, Kienle Z, Foster TJ, O’Toole PW (1993) The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect Immun 61:768–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper LZ, Madoff MA, Weinstein L (1964) Hemolysis of rabbit erythrocytes by purified staphylococcal alpha-toxin. I. Kinetics of the lytic reaction. J Bacteriol 87:127–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crémieux A-C, Dumitrescu O, Lina G et al (2009) Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS ONE 4:e7204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuny C, Abdelbary M, Layer F et al (2015) Prevalence of the immune evasion gene cluster in Staphylococcus aureus CC398. Vet Microbiol 177:219–223

    Article  CAS  PubMed  Google Scholar 

  • De Haas CJC, Veldkamp KE, Peschel A et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  • De Haas CJC, Weeterings C, Vughs MM et al (2009) Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibalpha and alpha IIb beta 3. J Thromb Haemost 7:1867–1874

    Article  PubMed  CAS  Google Scholar 

  • Deis LN, Pemble CW, Qi Y et al (2014) Multiscale conformational heterogeneity in staphylococcal protein A: possible determinant of functional plasticity. Structure 22:1467–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deis LN, Wu Q, Wang Y et al (2015) Suppression of conformational heterogeneity at a protein–protein interface. Proc Natl Acad Sci USA 112:9028–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Kennedy AD, Chen L et al (2011) Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci USA 108:18091–18096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deringer JR, Ely RJ, Monday SR et al (1997) Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect Immun 65:4048–4054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diep BA, Palazzolo-Ballance AM, Tattevin P et al (2008) Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE 3:e3198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diep BA, Chan L, Tattevin P et al (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci USA 107:5587–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinges MM, Gregerson DS, Tripp TJ et al (2003) Effects of total body irradiation and cyclosporin a on the lethality of toxic shock syndrome toxin-1 in a rabbit model of toxic shock syndrome. J Infect Dis 188:1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Dumont AL, Nygaard TK, Watkins RL et al (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79:814–825

    Article  CAS  PubMed  Google Scholar 

  • DuMont AL, Yoong P, Day CJ et al (2013) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci USA 110:10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Economou A (2002) Bacterial secretome: the assembly manual and operating instructions (review). Mol Membr Biol 19:159–169

    Article  CAS  PubMed  Google Scholar 

  • Everitt RG, Didelot X, Batty EM et al (2014) Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat Commun 5:3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falugi F, Kim HK, Missiakas DM, Schneewind O (2013) Role of protein a in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio 4:e00575-13

    Google Scholar 

  • Fevre C, Bestebroer J, Mebius MM et al (2014) Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 16:1646–1665

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JR, Monday SR, Foster TJ et al (2001) Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald JR, Reid SD, Ruotsalainen E et al (2003) Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the Staphylococcal exotoxin-like family of proteins. Infect Immun 71:2827–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198

    Article  CAS  PubMed  Google Scholar 

  • Foletti D, Strop P, Shaughnessy L et al (2013) Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. J Mol Biol 425:1641–1654

    Article  CAS  PubMed  Google Scholar 

  • Fowler VG, Proctor RA (2014) Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect 20:66–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–243

    Article  CAS  PubMed  Google Scholar 

  • Friedrich R, Panizzi P, Fuentes-Prior P et al (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535–539

    Article  CAS  PubMed  Google Scholar 

  • Friedrich R, Panizzi P, Kawabata SI et al (2006) Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J Biol Chem 281:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Fritz SA, Tiemann KM, Hogan PG et al (2013) A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin Infect Dis 56:1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromageau A, Gilbert FB, Prévost G, Rainard P (2010) Binding of the Staphylococcus aureus leucotoxin LukM to its leucocyte targets. Microb Pathog 49:354–362

    Article  CAS  PubMed  Google Scholar 

  • Galdiero S, Gouaux E (2004) High resolution crystallographic studies of alpha-hemolysinphospholipid complexes define heptamer–lipid head group interactions: Implication for understanding protein–lipid interactions, pp 1503–1511

    Google Scholar 

  • Garcia BL, Ramyar KX, Tzekou A et al (2010) Molecular basis for complement recognition and inhibition determined by crystallographic studies of the Staphylococcal complement inhibitor (SCIN) bound to C3c and C3b. J Mol Biol 402:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia BL, Ramyar KX, Ricklin D et al (2012a) Advances in understanding the structure, function, and mechanism of the SCIN and Efb families of Staphylococcal immune evasion proteins. Adv Exp Med Biol 946:113–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia BL, Summers BJ, Lin Z et al (2012b) Diversity in the C3b convertase contact residues and tertiary structures of the staphylococcal complement inhibitor (SCIN) protein family. J Biol Chem 287:628–640

    Article  CAS  PubMed  Google Scholar 

  • Garcia BL, Summers BJ, Ramyar KX et al (2013) A structurally dynamic n-terminal helix is a key functional determinant in staphylococcal complement inhibitor (SCIN) proteins. J Biol Chem 288:2870–2881

    Article  CAS  PubMed  Google Scholar 

  • Geisbrecht BV, Hamaoka BY, Perman B et al (2005) The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J Biol Chem 280:17243–17250

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Fouts DE, Archer GL et al (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillet Y, Issartel B, Vanhems P, et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet (London, England) 359:753–759

    Google Scholar 

  • Gladysheva IP, Turner RB, Sazonova IY et al (2003) Coevolutionary patterns in plasminogen activation. Proc Natl Acad Sci USA 100:9168–9172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez MI, Lee A, Reddy B et al (2004) Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10:842–848

    Article  PubMed  CAS  Google Scholar 

  • Gómez MI, O’Seaghdha M, Magargee M et al (2006) Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG binding domains. J Biol Chem 281:20190–20196

    Article  PubMed  CAS  Google Scholar 

  • Goodyear CS, Silverman GJ (2003) Death by a B cell superantigen: In vivo VH-targeted apoptotic supraclonal B cell deletion by a staphylococcal toxin. J Exp Med 197:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graille M, Stura EA, Corper AL et al (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci USA 97:5399–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grumann D, Nübel U, Bröker BM (2014) Staphylococcus aureus toxins—their functions and genetics. Infect Genet Evol 21:583–592

    Article  CAS  PubMed  Google Scholar 

  • Guillet V, Roblin P, Werner S et al (2004) Crystal structure of leucotoxin S component: New insight into the staphylococcal β-barrel pore-forming toxins. J Biol Chem 279:41028–41037

    Article  CAS  PubMed  Google Scholar 

  • Guinane CM, Sturdevant DE, Herron-Olson L et al (2008) Pathogenomic analysis of the common bovine Staphylococcus aureus clone (ET3): emergence of a virulent subtype with potential risk to public health. J Infect Dis 197:205–213. doi:10.1086/524689

    Article  CAS  PubMed  Google Scholar 

  • Guinane CM, Ben Zakour NL, Tormo-Mas MA et al (2010) Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2:454–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guinane CM, Penadés JR, Fitzgerald JR (2011) The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2:241–243

    Article  PubMed  Google Scholar 

  • Haas PJ, de Haas CJC, Kleibeuker W et al (2004) N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J Immunol 173:5704–5711

    Article  CAS  PubMed  Google Scholar 

  • Haas PJ, de Haas CJC, Poppelier MJJC et al (2005) The structure of the C5a receptor-blocking domain of chemotaxis inhibitory protein of Staphylococcus aureus is related to a group of immune evasive molecules. J Mol Biol 353:859–872

    Article  CAS  PubMed  Google Scholar 

  • Hammel M, Nemecek D, Keightley JA et al (2007) The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution. Protein Sci 16:2605–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartleib J, Köhler N, Dickinson RB et al (2000) Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 96:2149–2156

    CAS  PubMed  Google Scholar 

  • Haupt K, Reuter M, Van Den Elsen J et al (2008) The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement factor H and C3b. PLoS Pathog 4:e10000250

    Article  CAS  Google Scholar 

  • Henson SE, Smith D, Boackle SA et al (2001) Generation of recombinant human C3dg tetramers for the analysis of CD21 binding and function. J Immunol Methods 258:97–109

    Article  CAS  PubMed  Google Scholar 

  • Hermans SJ, Baker HM, Sequeira RP et al (2012) Structural and functional properties of staphylococcal superantigen-like protein 4. Infect Immun 80:4004–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V (2007) Molecular correlates of host specialization in Staphylococcus aureus. PLoS ONE 2:e1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hidron AI, Low CE, Honig EG, Blumberg HM (2009) Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis 9:384–392

    Article  PubMed  Google Scholar 

  • Holt DC, Holden MTG, Tong SYC et al (2011) A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol Evol 3:881–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtfreter S, Bauer K, Thomas D et al (2004) egc-Encoded superantigens from Staphylococcus aureus are neutralized by human sera much less efficiently than are classical staphylococcal enterotoxins or toxic shock syndrome toxin. Infect Immun 72:4061–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Armstrong PCJ, Khalil E et al (2011) GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet activation and direct toward glycans as potential inhibitors. PLoS ONE 6:e19190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseby M, Shi K, Kent Brown C et al (2007) Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 189:8719–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Haggar A, Peters G et al (2008) More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host cell invasion but not for leukocyte activation. Infect Immun 76:5615–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoshima I, Inoshima N, Wilke GA et al (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoshima N, Wang Y, Wardenburg JB (2012) Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J Invest Dermatol 132:1513–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ippel JH, de Haas CJC, Bunschoten A et al (2009) Structure of the tyrosine-sulfated C5a receptor N terminus in complex with chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 284:12363–12372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh S, Hamada E, Kamoshida G et al (2010a) Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun 78:3298–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh S, Hamada E, Kamoshida G et al (2010b) Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol 47:932–938

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Yamaoka N, Kamoshida G et al (2013a) Staphylococcal superantigen-like protein 8 (SSL8) binds to tenascin C and inhibits tenascin C-fibronectin interaction and cell motility of keratinocytes. Biochem Biophys Res Commun 433:127–132

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Yokoyama R, Kamoshida G et al (2013b) Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 288:21569–21580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarraud S, Peyrat MA, Lim A et al (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Bokarewa M, Foster T et al (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Jongerius I, Köhl J, Pandey MK et al (2007) Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204:2461–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongerius I, Puister M, Wu J et al (2010) Staphylococcal complement inhibitor modulates phagocyte responses by dimerization of convertases. J Immunol 184:420–425

    Article  CAS  PubMed  Google Scholar 

  • Jongerius I, von Köckritz-Blickwede M, Horsburgh MJ et al (2012) Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 4:301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jusko M, Potempa J, Kantyka T et al (2014) Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 6:31–46

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Kim HY, Schneewind O, Missiakas D (2011) Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J 25:3605–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Falugi F, Thomer L, Missiakas DM (2015) Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs. mBio 6:1–11

    Article  Google Scholar 

  • Ko YP, Liang X, Smith CW et al (2011) Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem 286:9865–9874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko YP, Kuipers A, Freitag CM et al (2013) Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 9:1–13

    Google Scholar 

  • Kobayashi SD, Malachowa N, Whitney AR et al (2011) Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis 204:937–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koymans KJ, Feitsma LJ, Brondijk THC et al (2015) Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc Natl Acad Sci USA 112:11018–11023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretschmer D, Gleske AK, Rautenberg M et al (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehnert MJ, Kruszon-Moran D, Hill HA et al (2006) Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 193:172–179

    Article  CAS  PubMed  Google Scholar 

  • Kumagai R, Nakatani K, Ikeya N et al (2007) Quadruple or quintuple conversion of hlb, sak, sea (or sep), scn, and chp genes by bacteriophages in non-beta-hemolysin-producing bovine isolates of Staphylococcus aureus. Vet Microbiol 122:190–195

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Yamashita A, Hirakawa H et al (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci USA 102:13272–13277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laarman AJ, Ruyken M, Malone CL et al (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453

    Article  CAS  PubMed  Google Scholar 

  • Laarman AJ, Mijnheer G, Mootz JM et al (2012) Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31:3607–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley R, Wines B, Willoughby N et al (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 174:2926–2933

    Article  CAS  PubMed  Google Scholar 

  • Langley R, Patel D, Jackson N et al (2010) Staphylococcal superantigen super-domains in immune evasion. Crit Rev Immunol 30:149–165

    Article  CAS  PubMed  Google Scholar 

  • Langley R, Fraser JD (2013) The staphylococcal Superantigen-like toxins. Bact Toxins: Genet Cell Biol Pract Appl 129–156

    Google Scholar 

  • Laursen NS, Gordon N, Hermans S et al (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci USA 107:3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le KY, Dastgheyb S, Ho TV, Otto M (2014) Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol 4:1–7

    Article  CAS  Google Scholar 

  • Lee PK, Kreiswirth BN, Deringer JR et al (1992) Nucleotide sequences and biologic properties of toxic shock syndrome toxin 1 from ovine- and bovine-associated Staphylococcus aureus. J Infect Dis 165:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Kim YJ, Chung DR et al (2010) Invasive infection caused by a community-associated methicillin-resistant Staphylococcus aureus strain not carrying Panton-Valentine leukocidin in South Korea. J Clin Microbiol 48:311–313

    Article  PubMed  CAS  Google Scholar 

  • Lina G, Piémont Y, Godail-Gamot F et al (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Lina G, Bohach GA, Nair SP et al (2004) Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189:2334–2336

    Article  PubMed  Google Scholar 

  • Lindsay JA, Ruzin A, Ross HF et al (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JA, Holden MTG (2006a) Understanding the rise of the superbug: Investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JA, Moore CE, Day NP et al (2006b) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JA (2014) Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304:103–109

    Article  CAS  PubMed  Google Scholar 

  • Lipinska U, Hermans K, Meulemans L et al (2011) Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: a rabbit model. PLoS ONE 6:e22864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZJ, Yang YJ, Jiang L et al (2011) Tyrosine sulfation in N-terminal domain of human C5a receptor is necessary for binding of chemotaxis inhibitory protein of Staphylococcus aureus. Acta Pharmacol Sin 32:1038–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yin H, Zhao M, Lu Q (2013) TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 1–12

    Google Scholar 

  • Löffler B, Hussain M, Grundmeier M et al (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6:e1000715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowder BV, Guinane CM, Ben Zakour NL et al (2009) Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci USA 106:19545–19550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy F (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  • Malachowa N, Deleo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa N, Kobayashi SD, Braughton KR et al (2012) Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis 206:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malito E, Carfi A, Bottomley M (2015) Protein crystallography in vaccine research and development. Int J Mol Sci 16:13106–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy AJ, Lindsay JA (2010) Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 10:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarthy AJ, Lindsay JA, Loeffler A (2012a) Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA. Vet Dermatol 23:267–275

    Article  PubMed  Google Scholar 

  • McCarthy AJ, van Wamel WJB, Vandendriessche S et al (2012b) Staphylococcus aureus CC398 clade associated with human-to-human transmission. Appl Environ Microbiol 78:8845–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy AJ, Witney AA, Lindsay JA (2012c) Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front Cell Infect Microbiol 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol 19:7–14

    Article  CAS  PubMed  Google Scholar 

  • Monecke S, Kuhnert P, Hotzel H et al (2007) Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125:128–140

    Article  CAS  PubMed  Google Scholar 

  • Monecke S, Luedicke C, Slickers P, Ehricht R (2009) Molecular epidemiology of Staphylococcus aureus in asymptomatic carriers. Eur J Clin Microbiol Infect Dis 28:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Moon BY, Park JY, Hwang SY et al (2015) Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5:9784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morinaga N, Kaihou Y, Noda M (2003) Purification, cloning and characterization of variant LukE-LukD with strong leukocidal activity of staphylococcal bi-component leukotoxin family. Microbiol Immunol 47:81–90

    Article  CAS  PubMed  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Oscherwitz J, Cease KB et al (2013) Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Ghebrehiwet B, Ellinor IB (2000) Staphylococcus aureus Protein A recognizes platelet gC1qR/ p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 68:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Christie GE, Penadés JR (2010) The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard TK, Pallister KB, DuMont AL et al (2012) Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS ONE 7:e36532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura CYM, Nizet V (2014) Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol 68:439–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson R, Nariya H, Yokota K et al (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    Article  CAS  PubMed  Google Scholar 

  • Omoe K, Hu DL, Takahashi-Omoe H et al (2005) Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett 246:191–198

    Article  CAS  PubMed  Google Scholar 

  • Ono HK, Sato’o Y, Narita K et al (2015) Identification and characterization of a novel staphylococcal emetic toxin. Appl Environ Microbiol 81:7034–7040

    Google Scholar 

  • Otter JA, French GL (2008) The emergence of community-associated methicillin-resistant Staphylococcus aureus at a London teaching hospital, 2000–2006. Clin Microbiol Infect 14:670–676

    Article  CAS  PubMed  Google Scholar 

  • Padmaja RJ, Halami PM (2013) Molecular characterization and toxicity confirmation of LukM/F’-PV producing Staphylococcus aureus isolated from bovine mastitis samples in Mysore, India. Indian J Microbiol 53:276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma M, Shannon O, Quezada HC et al (2001) Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the alpha-chain. J Biol Chem 276:31691–31697

    Article  CAS  PubMed  Google Scholar 

  • Panizzi P, Friedrich R, Fuentes-Prior P et al (2006) Fibrinogen substrate recognition by staphylocoagulase·(Pro)thrombin complexes. J Biol Chem 281:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Parry MA, Fernandez-Catalan C, Bergner A et al (1998) The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol 5:917–923

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Wines BD, Langley RJ, Fraser JD (2010) Specificity of staphylococcal superantigen-like protein 10 toward the human IgG1 Fc domain. J Immunol 184:6283–6292

    Article  CAS  PubMed  Google Scholar 

  • Pédelacq JD, Maveyraud L, Prévost G et al (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287

    Article  PubMed  Google Scholar 

  • Penadés JR, Fitzgerald JR (2009) Toxins encoded by mobile genetic elements. Current research and future trends, Microbial toxins, pp 1–13

    Google Scholar 

  • Peton V, Le Loir Y (2014) Staphylococcus aureus in veterinary medicine. Infect Genet Evol 21:602–615

    Article  PubMed  Google Scholar 

  • Phimister GM, Freer JH (1984) Binding of 125I-alpha toxin of Staphylococcus aureus to erythrocytes. J Med Microbiol 18:197–204

    Article  CAS  PubMed  Google Scholar 

  • Postma B, Poppelier MJ, van Galen JC et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001

    Article  CAS  PubMed  Google Scholar 

  • Postma B, Kleibeuker W, Poppelier MJJG et al (2005) Residues 10-18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 280:2020–2027

    Article  CAS  PubMed  Google Scholar 

  • Powers ME, Kim HK, Wang Y, Wardenburg JB (2012) ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 206:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prat C, Bestebroer J, de Haas CJC et al (2006) A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol 177:8017–8026

    Article  CAS  PubMed  Google Scholar 

  • Prat C, Haas PJ, Bestebroer J et al (2009) A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. J Immunol 183:6569–6578

    Article  CAS  PubMed  Google Scholar 

  • Price LB, Stegger M, Hasman H, et al (2012) Adaptation and emergence of Staphylococcus aureus CC39: Host adaptation and emergence of methicillin resistance in livestock. mBio 3:e00305-11

    Google Scholar 

  • Prokesová L, Potuzníkovà B, Potempa J et al (1995) Cleavage of human immunoglobulins by proteinase from Staphylococcus aureus. Adv Exp Med Biol 371A:613–616

    Article  PubMed  Google Scholar 

  • Quiles-Puchalt N, Carpena N, Alonso JC et al (2014) Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci USA 111:6016–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabijns A, De Bondt H, De Ranter C (1997) Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat Struct Biol 4:357–360

    Article  CAS  PubMed  Google Scholar 

  • Rahimpour R, Mitchell G, Khandaker MH et al (1999) Bacterial superantigens induce down-modulation of CC chemokine responsiveness in human monocytes via an alternative chemokine ligand-independent mechanism. J Immunol 162:2299–2307

    CAS  PubMed  Google Scholar 

  • Rainard P, Corrales JC, Barrio MB et al (2003) Leucotoxic activities of Staphylococcus aureus strains isolated from cows, ewes, and goats with mastitis: importance of LukM/LukF’-PV leukotoxin. Clin Diagn Lab Immunol 10:272–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsland PA, Willoughby N, Trist HM et al (2007) Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci USA 104:15051–15056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Robles T, Alonzo F, Kozhaya L et al (2013) Staphylococcus aureus Leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to Kill leukocytes and promote infection. Cell Host Microbe 14:453–459

    Article  CAS  PubMed  Google Scholar 

  • Ricklin D, Ricklin-Lichtsteiner SK, Markiewski MM et al (2008) Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2. J Immunol 181:7463–7467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Tzekou A, Garcia BL et al (2009) A molecular insight into complement evasion by the staphylococcal complement inhibitor protein family. J Immunol 183:2565–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rödström KEJ, Elbing K, Lindkvist-Petersson K (2014) Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. J Immunol 193:1998–2004

    Article  PubMed  CAS  Google Scholar 

  • Rooijakkers SHM, Ruyken M, Roos A et al (2005a) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927

    Article  CAS  PubMed  Google Scholar 

  • Rooijakkers SHM, van Wamel WJB, Ruyken M et al (2005b) Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484

    Article  CAS  PubMed  Google Scholar 

  • Rooijakkers SHM, Milder FJ, Bardoel BW et al (2007) Staphylococcal complement inhibitor: structure and active sites. J Immunol 179:2989–2998

    Article  CAS  PubMed  Google Scholar 

  • Rooijakkers SHM, Wu J, Ruyken M et al (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouha H, Badarau A, Visram ZC et al (2015) Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 7:243–254

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabón W, Breshears L, Spaulding AR, et al (2013) Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. mBio 4:e00494-13

    Google Scholar 

  • Salgado-Pabón W, Schlievert PM (2014) Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 12:585–591

    Article  PubMed  CAS  Google Scholar 

  • Schad EM, Zaitseva I, Zaitsev VN et al (1995) Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J 14:3292–3301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherr TD, Hanke ML, Huang O et al (2015) Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. mBio 6:e01021-15

    Google Scholar 

  • Schijffelen MJ, Boel CHE, van Strijp JAG, Fluit AC (2010) Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genom 11:376

    Article  CAS  Google Scholar 

  • Schlievert PM (2009) Cytolysins, superantigens, and pneumonia due to community-associated methicillin-resistant Staphylococcus aureus. J Infect Dis 200:676–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlotter K, Ehricht R, Hotzel H et al (2012) Leukocidin genes lukF-P83 and lukM are associated with taphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. Vet Res 43:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneewind O, Model P, Fischetti VA (1992) Sorting of Protein-A to the staphylococcal cell-wall. Cell 70:267–281

    Article  CAS  PubMed  Google Scholar 

  • Schreiner J, Kretschmer D, Klenk J et al (2013) Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J Immunol 190:3417–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scully IL, Liberator PA, Jansen KU, Anderson AS (2014) Covering all the bases: preclinical development of an effective Staphylococcus aureus vaccine. Front Immunol 5:1–7

    Article  CAS  Google Scholar 

  • Sieprawska-lupa M, Mydel P, Wójcik K et al (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson VR, Davison NJ, Kearns AM et al (2013) Association of a lukM-positive clone of Staphylococcus aureus with fatal exudative dermatitis in red squirrels (Sciurus vulgaris). Vet Microbiol 162:987–991

    Article  CAS  PubMed  Google Scholar 

  • Smagur J, Guzik K, Bzowska M et al (2009) Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 390:361–371

    Article  CAS  PubMed  Google Scholar 

  • Smith EJ, Visai L, Kerrigan SW et al (2011) The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect Immun 79:3801–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth DS, Hartigan PJ, Meaney WJ et al (2005) Superantigen genes encoded by the egc cluster and SaPlbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J Med Microbiol 54:401–411

    Article  CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C et al (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Spaan AN, Henry T, Van Rooijen WJM et al (2013) The staphylococcal toxin panton-valentine leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594

    Article  CAS  PubMed  Google Scholar 

  • Spaan AN, Vrieling M, Wallet P et al (2014) The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5:5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaan AN, Reyes-Robles T, Badiou C et al (2015a) Staphylococcus aureus targets the duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe 18:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaan AN, Schiepers A, de Haas CJC et al (2015b) Differential interaction of the staphylococcal toxins Panton-Valentine leukocidin and γ-hemolysin CB with human C5a receptors. J Immunol 195:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaulding AR, Salgado-Pabón W, Kohler PL et al (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapels DAC, Ramyar KX, Bischoff M et al (2014) Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors that promotes bacterial infection. Proc Natl Acad Sci USA 111:13187–13192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapels DAC, Kuipers A, von Köckritz-Blickwede M et al (2015) Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases. Cell Microbiol

    Google Scholar 

  • Stemerding AM, Köhl J, Pandey MK et al (2013) Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FLIPr) and its homologue FLIPr-like are potent FcγR antagonists that inhibit IgG-mediated effector functions. J Immunol 191:353–362

    Article  CAS  PubMed  Google Scholar 

  • Stulik L, Malafa S, Hudcova J et al (2014) α-hemolysin activity of methicillin-susceptible Staphylococcus aureus predicts ventilator-associated pneumonia. Am J Respir Crit Care Med 190:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Stutz K, Stephan R, Tasara T (2011) SpA, ClfA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J Clin Microbiol 49:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi A, Ubeda C, Adhikari RP et al (2007) Sequence analysis reveals genetic exchanges and intraspecific spread of SaPl2, pathogenicity island involved in menstrual toxic shock. Microbiology 153:3235–3245

    Article  CAS  PubMed  Google Scholar 

  • Summers BJ, Garcia BL, Woehl JL et al (2015) Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins. Mol Immunol 67:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19:262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung JML, Lloyd DH, Lindsay JA (2008) Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154:1949–1959

    Article  CAS  PubMed  Google Scholar 

  • Surewaard BGJ, Nijland R, Spaan AN et al (2012) Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog 8:e1002606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surewaard BGJ, De Haas CJC, Vervoort F et al (2013) Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 15:1427–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi F, Watanabe S, Baba T et al (2005) Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Hirano N, Kaneko J et al (2011) 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure. Protein Sci 20:448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thammavongsa V, Missiakas D, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science (80-) 342:863–866

    Google Scholar 

  • Thomas DY, Jarraud S, Lemercier B et al (2006) Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect Immun 74:4724–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomer L, Schneewind O, Missiakas D (2013) Multiple ligands of von willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 288:28283–28292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurlow LR, Hanke ML, Fritz T et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollersrud T, Kampen AH, Kenny K (2006) Staphylococcus aureus enterotoxin D is secreted in milk and stimulates specific antibody responses in cows in the course of experimental intramammary infection. Infect Immun 74:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchscherr L, Heitmann V, Hussain M et al (2010) Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 202:1031–1040

    Article  PubMed  Google Scholar 

  • van Wamel WJB, Rooijakkers SHM, Ruyken M et al (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenesch F, Naimi T, Enright MC et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkaik NJ, Benard M, Boelens HA et al (2011) Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 17:343–348

    Article  CAS  PubMed  Google Scholar 

  • Viana D, Blanco J, Tormo-Más MÁ et al (2010) Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol 77:1583–1594

    Article  CAS  PubMed  Google Scholar 

  • Viana D, Comos M, McAdam PR et al (2015) A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat Genet 47:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrieling M, Koymans KJ, Heesterbeek DAC et al (2015) Bovine Staphylococcus aureus secretes the leukocidin LukMF’ to kill migrating neutrophils through CCR1. mBio 6:e00335

    Google Scholar 

  • Walenkamp AME, Boer IGJ, Bestebroer J et al (2009) Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 11:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walenkamp AME, Bestebroer J, Boer IGJ et al (2010) Staphylococcal SSL5 binding to human leukemia cells inhibits cell adhesion to endothelial cells and platelets. Cell Oncol 32:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Braughton KR, Kretschmer D et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Ward MJ, Gibbons CL, McAdam PR et al (2014) Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol 80:7275–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson E, Matousek WM, Irimies EL, Alexandrescu AT (2007) Partially folded states of staphylococcal nuclease highlight the conserved structural hierarchy of OB-fold proteins. Biochemistry 46:9484–9494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke G , Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107:13473–13478

    Google Scholar 

  • Williams RJ, Ward JM, Henderson B et al (2000) Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins : characterization of the prototypic gene and its protein product, SET1. Infect Immun 68:4407–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willingham SB, Volkmer JP, Gentles AJ et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GJ, Seo KS, Cartwright RA et al (2011) A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog 7:e1002271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woehl JL, Stapels DAC, Garcia BL et al (2014) The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. J Immunol 193:6161–6171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SX, Gilmore KJ, Szabo PA et al (2014) Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Infect Immun 82:3588–3598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu SX, Kasper KJ, Zeppa JJ, McCormick JK (2015) Superantigens modulate bacterial density during Staphylococcus aureus nasal colonization. Toxins (Basel) 7:1821–1836

    Article  CAS  Google Scholar 

  • Yamada T, Tochimaru N, Nakasuji S et al (2005) Leukotoxin family genes in Staphylococcus aureus isolated from domestic animals and prevalence of lukM-lukF-PV genes by bacteriophages in bovine isolates. Vet Microbiol 110:97–103

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Kawai Y, Tanaka Y et al (2011) Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita D, Sugawara T, Takeshita M et al (2014) Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat Commun 5:4897

    Article  CAS  PubMed  Google Scholar 

  • Yeung RS, Penninger JM, Kündig T et al (1996) Human CD4 and human major histocompatibility complex class II (DQ6) transgenic mice: supersensitivity to superantigen-induced septic shock. Eur J Immunol 26:1074–1082

    Article  CAS  PubMed  Google Scholar 

  • Yokomizo Y, Mori Y, Shimoji Y et al (1995) Proliferative response and cytokine production of bovine peripheral blood mononuclear cells induced by the superantigens staphylococcal enterotoxins and toxic shock syndrome toxin-1. J Vet Med Sci 57:299–305

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Itoh S, Kamoshida G et al (2012) Staphylococcal superantigen-like protein 3 binds to the toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun 80:2816–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jacobson K, Vasi J et al (1995) A second IgG-binding protein in Staphylococcus aureus. Microbiology 408:985–991

    Google Scholar 

  • Zhang L, Jacobsson K, Ström K et al (1999) Staphylococcus aureus expresses a cell surface protein that binds both IgG and beta2-glycoprotein I. Microbiology 145:177–183

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Kaneko J, Narita S, Kamio Y (2000) Prophage, phiPV83-pro, carrying panton-valentine leukocidin genes, on the Staphylococcus aureus P83 chromosome: comparative analysis of the genome structures of phiPV83-pro, phiPVL, phi11, and other phages. Biosci Biotechnol Biochem 64:2631–2643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Carla de Haas, Dr. Daphne Stapels, Dr. Julia Kolata, Dr. Stephen Nutbeam-Tuffs, and Jacques Flores Dourojeanni for useful discussions and critical review of the manuscript. This work was supported by funding from The Dutch Science Foundation NWO (KJK), the ALTANT initiative of the Dutch Ministry of Economic Affairs (MV) H2020, and M.S. Curie (RDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten J. Koymans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koymans, K.J., Vrieling, M., Gorham, R.D., van Strijp, J.A.G. (2015). Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. In: Bagnoli, F., Rappuoli, R., Grandi, G. (eds) Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol 409. Springer, Cham. https://doi.org/10.1007/82_2015_5017

Download citation

Publish with us

Policies and ethics