Advertisement

lncRNAs in Stress Response

  • Saba ValadkhanEmail author
  • Alberto Valencia-Hipólito
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 394)

Abstract

All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.

Keywords

Heat Shock Response Hypoxic Response Bidirectional Promoter Genotoxic Agent Stress Response Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding for this work was provided by CFAR grant number P30-AI036219 to S.V. and a postdoctoral scholarship from the National Board of Science and Technology of Mexico to A.V.H. The authors declare no conflict of interest.

References

  1. Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M (2008) Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 389:243–255. doi: 10.1515/BC.2008.022 PubMedCrossRefGoogle Scholar
  2. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109:807–809PubMedCrossRefGoogle Scholar
  3. Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821. doi: 10.1038/nsmb813 PubMedCrossRefGoogle Scholar
  4. Almada AE, Wu X, Kriz AJ et al (2013) Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499:360–363. doi: 10.1038/nature12349 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Altuvia S, Weinstein-Fischer D, Zhang A et al (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53PubMedCrossRefGoogle Scholar
  6. Amaral PP, Dinger ME, Mattick JS (2013) Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 12:254–278. doi: 10.1093/bfgp/elt016 PubMedCrossRefGoogle Scholar
  7. Amor BB, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69. doi: 10.1101/gr.080275.108 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ariel F, Romero-Barrios N, Jégu T et al (2015) Battles and hijacks: noncoding transcription in plants. Trends Plant Sci 20:362–371. doi: 10.1016/j.tplants.2015.03.003 PubMedCrossRefGoogle Scholar
  9. Arrigo P, Pulliero A (2015) Effect of Environmental Chemical Stress on Nuclear Noncoding RNA Involved in Epigenetic Control. Biomed Res Int 2015:761703. doi: 10.1155/2015/761703 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes - integrating cell survival and death. J Biosci 32:595–610PubMedCrossRefGoogle Scholar
  11. Audas TE, Jacob MD, Lee S (2012) Immobilization of Proteins in the Nucleolus by Ribosomal Intergenic Spacer Noncoding RNA. Mol Cell 45:147–157. doi: 10.1016/j.molcel.2011.12.012 PubMedCrossRefGoogle Scholar
  12. Audas TE, Lee S (2015) Stressing out over long noncoding RNA. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2015.06.010 PubMedGoogle Scholar
  13. Aversano R, Contaldi F, Ercolano MR et al (2015) The solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968. doi: 10.1105/tpc.114.135954 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ayupe AC, Tahira AC, Camargo L et al (2015) Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol 12:877–892. doi: 10.1080/15476286.2015.1062960 PubMedCrossRefGoogle Scholar
  15. Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163. doi: 10.1016/j.mib.2007.03.007 PubMedCrossRefGoogle Scholar
  16. Bai Y, Dai X, Harrison AP, Chen M (2015) RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Brief Funct Genomics 14:91–101. doi: 10.1093/bfgp/elu017 PubMedCrossRefGoogle Scholar
  17. Bański P, Kodiha M, Stochaj U (2010a) Chaperones and multitasking proteins in the nucleolus: networking together for survival? Trends Biochem Sci 35:361–367. doi: 10.1016/j.tibs.2010.02.010 PubMedCrossRefGoogle Scholar
  18. Bański P, Mahboubi H, Kodiha M et al (2010b) Nucleolar targeting of the chaperone hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. J Biol Chem 285:21858–21867. doi: 10.1074/jbc.M110.117291 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi: 10.1126/science.1138140 PubMedCrossRefGoogle Scholar
  20. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229. doi: 10.1007/s10863-007-9080-3 PubMedCrossRefGoogle Scholar
  21. Bazin J, Bailey-Serres J (2015) Emerging roles of long non-coding RNA in root developmental plasticity and regulation of phosphate homeostasis. Front Plant Sci 6:400. doi: 10.3389/fpls.2015.00400 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Beasley NJP, Leek R, Alam M et al (2002) Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62:2493–2497PubMedGoogle Scholar
  23. Bertozzi D, Iurlaro R, Sordet O et al (2011) Characterization of novel antisense HIF-1α transcripts in human cancers. Cell Cycle 10:3189–3197PubMedCrossRefGoogle Scholar
  24. Bierhoff H, Dammert MA, Brocks D et al (2014) Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 54:675–682. doi: 10.1016/j.molcel.2014.03.032 PubMedCrossRefGoogle Scholar
  25. Bierhoff H, Schmitz K, Maass F et al (2010) Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol 75:357–364. doi: 10.1101/sqb.2010.75.060 PubMedCrossRefGoogle Scholar
  26. Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS ONE 7:e43047. doi: 10.1371/journal.pone.0043047 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bohn C, Rigoulay C, Chabelskaya S et al (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucl Acids Res 38:6620–6636. doi: 10.1093/nar/gkq462 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boulon S, Ahmad Y, Trinkle-Mulcahy L et al (2010) Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners. Mol Cell Proteomics 9:861–879. doi: 10.1074/mcp.M900517-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879. doi: 10.1016/j.molcel.2011.08.024 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brookheart RT, Michel CI, Listenberger LL et al (2009) The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem 284:7446–7454. doi: 10.1074/jbc.M806209200 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158. doi: 10.1196/annals.1391.032 PubMedCrossRefGoogle Scholar
  32. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941. doi: 10.1016/j.molcel.2009.11.020 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Calderwood SK (2005) Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods 35:139–148. doi: 10.1016/j.ymeth.2004.08.004 PubMedCrossRefGoogle Scholar
  34. Caniggia I, Mostachfi H, Winter J et al (2000) Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105:577–587. doi: 10.1172/JCI8316 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cannizzo ES, Clement CC, Sahu R et al (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteomics 74:2313–2323. doi: 10.1016/j.jprot.2011.06.005 PubMedCrossRefGoogle Scholar
  36. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. doi: 10.1126/science.1112014 PubMedCrossRefGoogle Scholar
  37. Chang Y-N, Zhang K, Hu Z-M et al (2015) Hypoxia-regulated lncRNAs in Cancer. Gene. doi: 10.1016/j.gene.2015.08.049 Google Scholar
  38. Chan SY, Zhang Y-Y, Hemann C et al (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284. doi: 10.1016/j.cmet.2009.08.015 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chaudhry MA (2013) Expression pattern of small nucleolar RNA host genes and long non-coding RNA in X-rays-treated lymphoblastoid cells. Int J Mol Sci 14:9099–9110. doi: 10.3390/ijms14059099 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216. doi: 10.1016/j.pbi.2015.08.003 PubMedCrossRefGoogle Scholar
  41. Chen R, Liu M, Li H et al (2008) PP2B and PP1alpha cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev 22:1356–1368. doi: 10.1101/gad.1636008 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Choi D, Oh HJ, Goh CJ et al (2015) Heat shock RNA 1, known as a eukaryotic temperature-sensing noncoding RNA, is of bacterial origin. J Microbiol Biotechnol 25:1234–1240. doi: 10.4014/jmb.1505.05014 PubMedCrossRefGoogle Scholar
  43. Choudhry H, Albukhari A, Morotti M et al (2015) Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34:4482–4490. doi: 10.1038/onc.2014.378 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Choudhry H, Schödel J, Oikonomopoulos S et al (2014) Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep 15:70–76. doi: 10.1002/embr.201337642 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Clark MB, Choudhary A, Smith MA et al (2013) The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem 54:1–16. doi: 10.1042/bse0540001 PubMedCrossRefGoogle Scholar
  46. Clark MB, Mattick JS (2011) Long noncoding RNAs in cell biology. Semin Cell Dev Biol 22:366–376. doi: 10.1016/j.semcdb.2011.01.001 PubMedCrossRefGoogle Scholar
  47. Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165. doi: 10.1073/pnas.1419030111 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dallosso AR, Hancock AL, Malik S et al (2007) Alternately spliced WT1 antisense transcripts interact with WT1 sense RNA and show epigenetic and splicing defects in cancer. RNA 13:2287–2299. doi: 10.1261/rna.562907 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dandekar A, Mendez R, Zhang K (2015) Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 1292:205–214. doi: 10.1007/978-1-4939-2522-3_15 PubMedCrossRefGoogle Scholar
  50. Dellavalle RP, Petersen R, Lindquist S (1994) Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster. Mol Cell Biol 14:3646–3659PubMedPubMedCentralCrossRefGoogle Scholar
  51. Denegri M, Chiodi I, Corioni M et al (2001) Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol Biol Cell 12:3502–3514PubMedPubMedCentralCrossRefGoogle Scholar
  52. Denegri M, Moralli D, Rocchi M et al (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13:2069–2079. doi: 10.1091/mbc.01-12-0569 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5:e944014. doi: 10.4161/21541272.2014.944014 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802. doi: 10.1161/STROKEAHA.112.669465 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Di C, Yuan J, Wu Y et al (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861. doi: 10.1111/tpj.12679 PubMedCrossRefGoogle Scholar
  56. Di Gesualdo F, Capaccioli S, Lulli M (2014) A pathophysiological view of the long non-coding RNA world. Oncotarget 5:10976–10996PubMedPubMedCentralCrossRefGoogle Scholar
  57. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi: 10.1038/nature11233 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dühring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. PNAS 103:7054–7058. doi: 10.1073/pnas.0600927103 PubMedPubMedCentralCrossRefGoogle Scholar
  59. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  60. ENCODE Project Consortium, Bernstein BE, Birney E et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  61. Engelhardt J, Stadler PF (2015) Evolution of the unspliced transcriptome. BMC Evol Biol 15:166. doi: 10.1186/s12862-015-0437-7 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Erickson L, Highsmith jr E, Fei P, Zhang J (2015) Targeting the hypoxia pathway to treat pancreatic and cancer. Drug Des Dev Ther 2029. doi:  10.2147/DDDT.S80888
  63. Espinosa-Diez C, Miguel V, Mennerich D et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197. doi: 10.1016/j.redox.2015.07.008 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Eymery A, Souchier C, Vourc’h C, Jolly C (2010) Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells. Exp Cell Res 316:1845–1855. doi:  10.1016/j.yexcr.2010.02.002
  65. Facecchia K, Fochesato L-A, Ray SD et al (2011) Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. J Toxicol 2011:683728. doi: 10.1155/2011/683728 PubMedPubMedCentralGoogle Scholar
  66. Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730. doi: 10.1038/nm1784 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Faghihi MA, Zhang M, Huang J et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56. doi: 10.1186/gb-2010-11-5-r56 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fasanaro P, D’Alessandra Y, Di Stefano V et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883. doi: 10.1074/jbc.M800731200 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ferdin J, Nishida N, Wu X et al (2013) HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ 20:1675–1687. doi: 10.1038/cdd.2013.119 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gabr SA, Al-Ghadir AH (2012) Role of cellular oxidative stress and cytochrome c in the pathogenesis of psoriasis. Arch Dermatol Res. doi: 10.1007/s00403-012-1230-8 PubMedGoogle Scholar
  71. Galea E, Launay N, Portero-Otin M et al (2012) Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta. doi: 10.1016/j.bbadis.2012.02.005 PubMedGoogle Scholar
  72. Gardini A, Shiekhattar R (2015) The many faces of long noncoding RNAs. FEBS J 282:1647–1657. doi: 10.1111/febs.13101 PubMedCrossRefGoogle Scholar
  73. Georg J, Hess WR (2011) cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75:286–300. doi: 10.1128/MMBR.00032-10 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Giannakakis A, Zhang J, Jenjaroenpun P et al (2015) Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Sci Rep 5:9737. doi: 10.1038/srep09737 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gloss BS, Dinger ME (2015) The specificity of long noncoding RNA expression. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2015.08.005 PubMedGoogle Scholar
  76. Gogol EB, Rhodius VA, Papenfort K et al (2011) Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. PNAS 108:12875–12880. doi: 10.1073/pnas.1109379108 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gómez-Maldonado L, Tiana M, Roche O et al (2015) EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34:2609–2620. doi: 10.1038/onc.2014.200 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Grzechnik P, Tan-Wong SM, Proudfoot NJ (2014) Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 39:319–327. doi: 10.1016/j.tibs.2014.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Guo G, Kang Q, Chen Q et al (2014) High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett 588:1780–1786. doi: 10.1016/j.febslet.2014.03.038 PubMedCrossRefGoogle Scholar
  80. Hao Y, Crenshaw T, Moulton T et al (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767. doi: 10.1038/365764a0 PubMedCrossRefGoogle Scholar
  81. Hauser MA, Aboobakar IF, Liu Y et al (2015) Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. doi: 10.1093/hmg/ddv347 PubMedCentralGoogle Scholar
  82. Hollander MC, Alamo I, Fornace AJ (1996) A novel DNA damage-inducible transcript, gadd7, inhibits cell growth, but lacks a protein product. Nucl Acids Res 24:1589–1593. doi: 10.1093/nar/24.9.1589 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Huang X, Ding L, Bennewith KL et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867. doi: 10.1016/j.molcel.2009.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. doi: 10.1016/j.cell.2010.06.040 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629. doi: 10.1038/ng.848 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ikemura T, Dahlberg JE (1973) Small Ribonucleic Acids of Escherichia coli II. NONCOORDINATE ACCUMULATION DURING STRINGENT CONTROL. J Biol Chem 248:5033–5041PubMedGoogle Scholar
  88. Jacob MD, Audas TE, Mullineux S-T, Lee S (2012) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus 3:315–319. doi: 10.4161/nucl.20585 PubMedCrossRefGoogle Scholar
  89. Jacob MD, Audas TE, Uniacke J et al (2013) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24:2943–2953. doi: 10.1091/mbc.E13-04-0223 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Johnson AB, Barton MC (2007) Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 618:149–162. doi: 10.1016/j.mrfmmm.2006.10.007 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446. doi: 10.1038/nsmb.2516 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jolly C, Lakhotia SC (2006) Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucl Acids Res 34:5508–5514. doi: 10.1093/nar/gkl711 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jolly C, Metz A, Govin J et al (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33. doi: 10.1083/jcb.200306104 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402. doi: 10.1016/j.molcel.2008.04.009 PubMedCrossRefGoogle Scholar
  95. Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66:6683–6691. doi: 10.1158/0008-5472.CAN-06-0425 PubMedCrossRefGoogle Scholar
  96. Kapusta A, Feschotte C (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 30:439–452. doi: 10.1016/j.tig.2014.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kawano M, Aravind L, Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64:738–754. doi: 10.1111/j.1365-2958.2007.05688.x PubMedPubMedCentralCrossRefGoogle Scholar
  98. Keniry A, Oxley D, Monnier P et al (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. doi: 10.1038/ncb2521 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672. doi: 10.1073/pnas.0904715106 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kim DS, Lee Y, Hahn Y (2010) Evidence for bacterial origin of heat shock RNA-1. RNA 16:274–279. doi: 10.1261/rna.1879610 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kino T, Hurt DE, Ichijo T, et al (2010) Noncoding RNA Gas5 Is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8–ra8. doi:  10.1126/scisignal.2000568
  102. Kotoglou P, Kalaitzakis A, Vezyraki P et al (2009) Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 14:391–406. doi: 10.1007/s12192-008-0093-6 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867. doi: 10.1128/MCB.01395-06 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kuwano Y, Pullmann R, Marasa BS et al (2010) NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38:225–238. doi: 10.1093/nar/gkp861 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lakhotia SC (2012) Long non-coding RNAs coordinate cellular responses to stress. Wiley Interdiscip Rev RNA 3:779–796. doi: 10.1002/wrna.1135 PubMedCrossRefGoogle Scholar
  106. Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121:49–70. doi: 10.1007/s00412-011-0341-x PubMedCrossRefGoogle Scholar
  107. Lam MTY, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 39:170–182. doi: 10.1016/j.tibs.2014.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lease RA, Smith D, McDonough K, Belfort M (2004) The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli. J Bacteriol 186:6179–6185. doi: 10.1128/JB.186.18.6179-6185.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lembke CG, Nishiyama MY, Sato PM et al (2012) Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Mol Biol 79:461–477. doi: 10.1007/s11103-012-9922-1 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215. doi: 10.1016/j.molcel.2010.09.027 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Li L, Eichten SR, Shimizu R et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40. doi: 10.1186/gb-2014-15-2-r40 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Li T, Spearow J, Rubin CM, Schmid CW (1999) Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239:367–372PubMedCrossRefGoogle Scholar
  113. Lis JT, Mason P, Peng J et al (2000) P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14:792–803PubMedPubMedCentralGoogle Scholar
  114. Liu B, Qian S-B (2014) Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA 5:301–315. doi: 10.1002/wrna.1212 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Liu J, Wang H, Chua N-H (2015a) Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13:319–328. doi: 10.1111/pbi.12336 PubMedCrossRefGoogle Scholar
  116. Liu Q, Sun S, Yu W et al (2015b) Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells. J Neurooncol 122:283–292. doi: 10.1007/s11060-015-1718-0 PubMedCrossRefGoogle Scholar
  117. Liu X, Hao L, Li D et al (2015c) Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinform 13:137–147. doi: 10.1016/j.gpb.2015.02.003 CrossRefGoogle Scholar
  118. Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765PubMedPubMedCentralCrossRefGoogle Scholar
  119. Liu X, Li D, Zhang W et al (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31:4415–4427. doi: 10.1038/emboj.2012.292 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Luca M, Luca A, Calandra C (2015) The role of oxidative damage in the pathogenesis and progression of alzheimer’s disease and vascular dementia. Oxid Med Cell Longev 2015:504678. doi: 10.1155/2015/504678 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Luo D, Wang Z, Wu J, et al (2014) The role of hypoxia inducible factor-1 in hepatocellular carcinoma, the role of hypoxia inducible factor-1 in hepatocellular carcinoma. BioMed Res Int BioMed Res Int 2014:e409272. doi:  10.1155/2014/409272,  10.1155/2014/409272
  122. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia inducible factors and the response to hypoxic stress. Mol Cell 40:294–309. doi: 10.1016/j.molcel.2010.09.022 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Malik K, Salpekar A, Hancock A et al (2000) Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms’ tumor. Cancer Res 60:2356–2360PubMedGoogle Scholar
  124. Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125:376–393. doi: 10.1016/j.pharmthera.2009.11.004 PubMedCrossRefGoogle Scholar
  125. Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509. doi: 10.1016/j.molcel.2007.12.013 PubMedCrossRefGoogle Scholar
  126. Marquardt S, Escalante-Chong R, Pho N et al (2014) A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157:1712–1723. doi: 10.1016/j.cell.2014.04.036 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845. doi: 10.1126/science.1165771 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Martinez JL, Sanchez-Elsner T, Morcillo G, Diez JL (2001) Heat shock regulatory elements are present in telomeric repeats of Chironomus thummi. Nucl Acids Res 29:4760–4766. doi: 10.1093/nar/29.22.4760 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971. doi: 10.1128/JB.187.20.6962-6971.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Matouk IJ, DeGroot N, Mezan S et al (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2:e845. doi: 10.1371/journal.pone.0000845 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Matouk IJ, Mezan S, Mizrahi A et al (2010) The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta 1803:443–451. doi: 10.1016/j.bbamcr.2010.01.010 PubMedCrossRefGoogle Scholar
  132. Matouk IJ, Raveh E, Abu-lail R et al (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 1843:1414–1426. doi: 10.1016/j.bbamcr.2014.03.023 PubMedCrossRefGoogle Scholar
  133. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7. doi: 10.1038/nsmb.2942 PubMedCrossRefGoogle Scholar
  134. McCarty G, Loeb DM (2015) Hypoxia-sensitive epigenetic regulation of an antisense-oriented lncRNA controls WT1 expression in myeloid leukemia cells. PLoS ONE 10:e0119837. doi: 10.1371/journal.pone.0119837 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Mercer TR, Clark MB, Crawford J et al (2014) Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protocols 9:989–1009. doi: 10.1038/nprot.2014.058 PubMedCrossRefGoogle Scholar
  136. Metz A, Soret J, Vourc’h C et al (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 117:4551–4558. doi:  10.1242/jcs.01329
  137. Mizutani R, Wakamatsu A, Tanaka N et al (2012) Identification and characterization of novel genotoxic stress-inducible nuclear long noncoding RNAs in mammalian cells. PLoS ONE 7:e34949. doi: 10.1371/journal.pone.0034949 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucl Acids Res 40:6391–6400. doi: 10.1093/nar/gks296 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437. doi: 10.1038/nrg3722 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Moseley PL, Wallen ES, McCafferty JD et al (1993) Heat stress regulates the human 70-kDa heat-shock gene through the 3′-untranslated region. Am J Physiol 264:L533–L537PubMedGoogle Scholar
  141. Nadal-Ribelles M, Solé C, Xu Z et al (2014) Control of Cdc28 CDK1 by a Stress-Induced lncRNA. Mol Cell 53:549–561. doi: 10.1016/j.molcel.2014.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ng S-Y, Soh BS, Rodriguez-Muela N et al (2015) Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell. doi: 10.1016/j.stem.2015.08.003 PubMedCentralGoogle Scholar
  143. Nguyen VT, Kiss T, Michels AA, Bensaude O (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325. doi: 10.1038/35104581 PubMedCrossRefGoogle Scholar
  144. Ning Y, Yong F, Haibin Z et al (2015) LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinomaGoogle Scholar
  145. Nogalska A, Engel WK, Askanas V (2010) Increased BACE1 mRNA and noncoding BACE1-antisense transcript in sporadic inclusion-body myositis muscle fibers–possibly caused by endoplasmic reticulum stress. Neurosci Lett 474:140–143. doi: 10.1016/j.neulet.2010.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Ntini E, Järvelin AI, Bornholdt J et al (2013) Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 20:923–928. doi: 10.1038/nsmb.2640 PubMedCrossRefGoogle Scholar
  147. Oh YS, Kim HY, Song I-C et al (2012) Hypoxia induces CXCR4 expression and biological activity in gastric cancer cells through activation of hypoxia-inducible factor-1α. Oncol Rep 28:2239–2246. doi: 10.3892/or.2012.2063 PubMedGoogle Scholar
  148. O’Leary VB, Ovsepian SV, Carrascosa LG et al (2015) PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485. doi: 10.1016/j.celrep.2015.03.043 PubMedCrossRefGoogle Scholar
  149. Özgür E, Mert U, Isin M et al (2013) Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells. Clin Exp Med 13:119–126. doi: 10.1007/s10238-012-0181-x PubMedCrossRefGoogle Scholar
  150. Pandey R, Mandal AK, Jha V, Mukerji M (2011) Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism. Genome Biol 12:R117. doi: 10.1186/gb-2011-12-11-r117 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22:1–5. doi: 10.1016/j.tig.2005.10.003 PubMedCrossRefGoogle Scholar
  152. Peterlin BM, Brogie JE, Price DH (2012) 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA 3:92–103. doi: 10.1002/wrna.106 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Place RF, Noonan EJ (2014) Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 19:159–172. doi: 10.1007/s12192-013-0456-5 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. doi: 10.1038/nature09144 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113(Pt 19):3485–3497PubMedGoogle Scholar
  156. Qi X, Xie S, Liu Y et al (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473. doi: 10.1007/s11103-013-0104-6 PubMedCrossRefGoogle Scholar
  157. Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 24:651–663. doi: 10.1016/j.tcb.2014.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Ramalingam M, Kim S-J (2012) Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Trans. doi:  10.1007/s00702-011-0758-7 (Vienna, Austria: 1996)
  159. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266. doi: 10.1016/j.molcel.2010.10.006 PubMedCrossRefGoogle Scholar
  160. Rinn JL (2014) lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a018614 PubMedGoogle Scholar
  161. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi: 10.1146/annurev-biochem-051410-092902 PubMedCrossRefGoogle Scholar
  162. Rizzi N, Denegri M, Chiodi I et al (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543–551. doi: 10.1091/mbc.E03-07-0487 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Romano AD, Serviddio G, de Matthaeis A et al (2010) Oxidative stress and aging. J Nephrol 23(Suppl 15):S29–S36PubMedGoogle Scholar
  164. Saito S, Lin Y-C, Tsai M-H et al (2015) Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung J Med Sci 31:279–286. doi: 10.1016/j.kjms.2015.03.002 PubMedCrossRefGoogle Scholar
  165. Saunders JW (1966) Death in embryonic systems. Science 154:604–612. doi: 10.1126/science.154.3749.604 PubMedCrossRefGoogle Scholar
  166. Semenza GL (2012a) Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med 18:534–543. doi: 10.1016/j.molmed.2012.08.001 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Semenza GL (2012b) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408. doi: 10.1016/j.cell.2012.01.021 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Shafiq S, Li J, Sun Q (2015) Functions of plants long non-coding RNAs. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2015.06.009 PubMedGoogle Scholar
  169. Shamovsky I, Ivannikov M, Kandel ES et al (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560. doi: 10.1038/nature04518 PubMedCrossRefGoogle Scholar
  170. Shamovsky I, Nudler E (2009) Isolation and characterization of the heat shock RNA 1. Methods Mol Biol 540:265–279. doi: 10.1007/978-1-59745-558-9_19 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Silva JM, Perez DS, Pritchett JR et al (2010) Identification of Long stress-induced non-coding transcripts that have altered expression in cancer. Genomics 95:355–362. doi: 10.1016/j.ygeno.2010.02.009 PubMedCrossRefGoogle Scholar
  172. Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000PubMedPubMedCentralGoogle Scholar
  173. Solé C, Nadal-Ribelles M, de Nadal E, Posas F (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61:299–308. doi: 10.1007/s00294-014-0453-y PubMedPubMedCentralCrossRefGoogle Scholar
  174. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. doi: 10.1016/j.molcel.2011.08.022 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811. doi: 10.1016/j.semcdb.2010.04.001 PubMedCrossRefGoogle Scholar
  176. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29:288–299. doi: 10.1002/bies.20544 PubMedCrossRefGoogle Scholar
  177. Takahashi K, Yan IK, Haga H, Patel T (2014) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127:1585–1594. doi: 10.1242/jcs.141069 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tani H, Onuma Y, Ito Y, Torimura M (2014) Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells. PLoS ONE 9:e106282. doi: 10.1371/journal.pone.0106282 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tani H, Torimura M (2013) Identification of short-lived long non-coding RNAs as surrogate indicators for chemical stress response. Biochem Biophys Res Commun 439:547–551. doi: 10.1016/j.bbrc.2013.09.006 PubMedCrossRefGoogle Scholar
  180. Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188. doi: 10.1146/annurev-genet-102209-163523 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Thrash-Bingham CA, Tartof KD (1999) aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91:143–151PubMedCrossRefGoogle Scholar
  182. Tilman G, Arnoult N, Lenglez S et al (2012) Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics 7:903–913. doi: 10.4161/epi.21107 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Uchida T, Rossignol F, Matthay MA et al (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells IMPLICATION OF NATURAL ANTISENSE HIF-1α. J Biol Chem 279:14871–14878. doi: 10.1074/jbc.M400461200 PubMedCrossRefGoogle Scholar
  184. Uesaka M, Nishimura O, Go Y et al (2014) Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genom 15:35. doi: 10.1186/1471-2164-15-35 CrossRefGoogle Scholar
  185. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. doi: 10.1016/j.cell.2013.06.020 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. doi: 10.1016/j.cell.2011.11.055 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Unoson C, Wagner EGH (2008) A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70:258–270. doi: 10.1111/j.1365-2958.2008.06416.x PubMedCrossRefGoogle Scholar
  188. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2:a004390. doi: 10.1101/cshperspect.a004390 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Valadkhan S, Nilsen TW (2010) Reprogramming of the non-coding transcriptome during brain development. J Biol 9:5. doi: 10.1186/jbiol197 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Valgardsdottir R, Chiodi I, Giordano M et al (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604. doi: 10.1091/mbc.E04-12-1078 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Valgardsdottir R, Chiodi I, Giordano M et al (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucl Acids Res 36:423–434. doi: 10.1093/nar/gkm1056 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Večerek B, Beich-Frandsen M, Resch A, Bläsi U (2010) Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucl Acids Res 38:1284–1293. doi: 10.1093/nar/gkp1125 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Velichko AK, Markova EN, Petrova NV et al (2013) Mechanisms of heat shock response in mammals. Cell Mol Life Sci 70:4229–4241. doi: 10.1007/s00018-013-1348-7 PubMedCrossRefGoogle Scholar
  194. Wakano C, Byun JS, Di L-J, Gardner K (2012) The dual lives of bidirectional promoters. Biochim Biophys Acta 1819:688–693. doi: 10.1016/j.bbagrm.2012.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wang F, Li X, Xie X et al (2008a) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582:1919–1927. doi: 10.1016/j.febslet.2008.05.012 PubMedCrossRefGoogle Scholar
  196. Wang X, Arai S, Song X et al (2008b) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454:126–130. doi: 10.1038/nature06992 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wan G, Hu X, Liu Y et al (2013a) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 32:2833–2847. doi: 10.1038/emboj.2013.221 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wan G, Mathur R, Hu X et al (2013b) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25:1086–1095. doi: 10.1016/j.cellsig.2013.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wang H, Chung PJ, Liu J et al (2014a) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453. doi: 10.1101/gr.165555.113 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wang Y, Liu X, Zhang H et al (2014b) Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 16:1094–1106. doi: 10.1016/j.neo.2014.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  201. Wang T-Z, Liu M, Zhao M-G et al (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131. doi: 10.1186/s12870-015-0530-5 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wang Y, Xu Z, Jiang J et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80. doi: 10.1016/j.devcel.2013.03.002 PubMedCrossRefGoogle Scholar
  203. Wang X-S, Zhang Z, Wang H-C et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12:4851–4858. doi: 10.1158/1078-0432.CCR-06-0134 PubMedCrossRefGoogle Scholar
  204. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi: 10.1016/j.tcb.2011.04.001 PubMedCrossRefGoogle Scholar
  205. Wassarman KM (2007) 6S RNA: a regulator of transcription. Mol Microbiol 65:1425–1431. doi: 10.1111/j.1365-2958.2007.05894.x PubMedCrossRefGoogle Scholar
  206. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628. doi: 10.1016/j.cell.2009.01.043 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wei W, Pelechano V, Järvelin AI, Steinmetz LM (2011) Functional consequences of bidirectional promoters. Trends Genet 27:267–276. doi: 10.1016/j.tig.2011.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wu J, Okada T, Fukushima T et al (2012) A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in arabidopsis. RNA Biol 9:302–313. doi: 10.4161/rna.19101 PubMedCrossRefGoogle Scholar
  209. Wunderlich M, Gross-Hardt R, Schöffl F (2014) Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol 85:541–550. doi: 10.1007/s11103-014-0202-0 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Xin M, Wang Y, Yao Y et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61PubMedPubMedCentralCrossRefGoogle Scholar
  211. Xuan H, Zhang L, Liu X et al (2015) PLNlncRbase: A resource for experimentally identified lncRNAs in plants. Gene. doi: 10.1016/j.gene.2015.07.069 Google Scholar
  212. Xu Q, Liu L-Z, Qian X et al (2012) MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucl Acids Res 40:761–774. doi: 10.1093/nar/gkr730 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Xue M, Li X, Li Z, Chen W (2014) Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol 35:6901–6912. doi: 10.1007/s13277-014-1925-x PubMedCrossRefGoogle Scholar
  214. Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106:5569–5574. doi: 10.1073/pnas.0810738106 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2:45–49. doi: 10.4161/trns.2.1.14306 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Yang C, Li X, Wang Y et al (2012a) Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 496:8–16. doi: 10.1016/j.gene.2012.01.012 PubMedCrossRefGoogle Scholar
  217. Yang F, Bi J, Xue X et al (2012b) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells: H19 regulates gastric cancer. FEBS J 279:3159–3165. doi: 10.1111/j.1742-4658.2012.08694.x PubMedCrossRefGoogle Scholar
  218. Yang F, Huo X, Yuan S et al (2013a) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49:1083–1096. doi: 10.1016/j.molcel.2013.01.010 PubMedCrossRefGoogle Scholar
  219. Yang Y, Sun M, Wang L, Jiao B (2013b) HIFs, angiogenesis, and cancer. J Cell Biochem 114:967–974. doi: 10.1002/jcb.24438 PubMedCrossRefGoogle Scholar
  220. Yang F, Zhang H, Mei Y, Wu M (2014a) Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell 53:88–100. doi: 10.1016/j.molcel.2013.11.004 PubMedCrossRefGoogle Scholar
  221. Yang L, Froberg JE, Lee JT (2014b) Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 39:35–43. doi: 10.1016/j.tibs.2013.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Yang Z-G, Gao L, Guo X-B, Shi Y-L (2015) Roles of long non-coding RNAs in gastric cancer metastasis. World J Gastroenterol 21:5220–5230. doi: 10.3748/wjg.v21.i17.5220 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Yang F, Zhang L, Huo X et al (2011) Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54:1679–1689. doi: 10.1002/hep.24563 PubMedCrossRefGoogle Scholar
  224. Yoshimizu T, Miroglio A, Ripoche M-A et al (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105:12417–12422. doi: 10.1073/pnas.0801540105 PubMedPubMedCentralCrossRefGoogle Scholar
  225. Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193. doi: 10.1016/0092-8674(86)90382-X PubMedCrossRefGoogle Scholar
  226. Young RS, Ponting CP (2013) Identification and function of long non-coding RNAs. Essays Biochem 54:113–126. doi: 10.1042/bse0540113 PubMedCrossRefGoogle Scholar
  227. Yu C, Xue J, Zhu W et al (2015) Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 36:81–94. doi: 10.1007/s13277-014-2875-z PubMedCrossRefGoogle Scholar
  228. Zhang A, Zhou N, Huang J et al (2013a) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23:340–350. doi: 10.1038/cr.2012.164 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Zhang H, Chen X, Wang C et al (2013b) Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.). Mol Biol Rep 40:6245–6253. doi: 10.1007/s11033-013-2736-7 PubMedCrossRefGoogle Scholar
  230. Zhang A, Xu M, Mo Y-Y (2014a) Role of the lncRNA–p53 regulatory network in cancer. J Mol Cell Biol 6:181–191. doi: 10.1093/jmcb/mju013 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Zhang W, Han Z, Guo Q et al (2014b) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9:e98958. doi: 10.1371/journal.pone.0098958 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Zhu J-Q, Liu J-H, Liang X-W et al (2008) Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts. Mol Cells 25:211–215PubMedGoogle Scholar
  233. Zhu Q-H, Stephen S, Taylor J et al (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol 201:574–584. doi: 10.1111/nph.12537 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular Biology and MicrobiologyCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations