Skip to main content

Lessons from NK Cell Deficiencies in the Mouse

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 395))

Abstract

Since their discovery in the late 1970s, in vivo studies on mouse natural killer (NK) cell almost entirely relied on the use of depleting antibodies and were associated with significant limitations. More recently, large-scale gene-expression analyses allowed the identification of NKp46 as one of the best markers of NK cells across mammalian species. Since then, NKp46 has been shown to be expressed on other subsets of innate lymphoid cells (ILCs) such as the closely related ILC1 and the mucosa-associated NCR+ ILC3. Based on this marker, several mouse models specifically targeting NKp46-expressing cell have recently been produced. Here, we review recent advances in the generation of models of deficiency in NKp46-expressing cells and their use to address the role of NK cells in immunity, notably on the regulation of adaptive immune responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews DM, Estcourt MJ, Andoniou CE, Wikstrom ME, Khong A, Voigt V, Fleming P, Tabarias H, Hill GR, van der Most RG et al (2010) Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 207:1333–1343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626–635

    Article  CAS  PubMed  Google Scholar 

  • Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, Dorn GW, Cyster JG (2011) GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333:1898–1903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  CAS  PubMed  Google Scholar 

  • Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, Best JA, Goldrath AW, Lanier LL, The Immunological Genome Project Consortium et al (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13:1000–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C et al (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlyle JR, Mesci A, Ljutic B, Bélanger S, Tai L-H, Rousselle E, Troke AD, Proteau M-F, Makrigiannis AP (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176:7511–7524

    Article  CAS  PubMed  Google Scholar 

  • Chaix J, Tessmer MS, Hoebe K, Fuséri N, Ryffel B, Dalod M, Alexopoulou L, Beutler B, Brossay L, Vivier E et al (2008) Cutting edge: priming of NK cells by IL-18. J Immunol 181:1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G, Mandelboim O (2012) Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog 8:e1002601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chisholm SE, Reyburn HT (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 80:2225–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Laer Von D, Kalinke U, Vivier E, Jonjić S, Oxenius A (2014) Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 40:961–973

    Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA et al (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211:563–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diefenbach A, Colonna M, Koyasu S (2014) Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eberl G, Di Santo JP, Vivier E (2015) The brave new world of innate lymphoid cells, pp 1–5

    Google Scholar 

  • Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rülicke T, Mueller M, Casanova E, Sexl V (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE, Girard WM, Rawal N, Shetty S et al (2006) Vimentin expressed on mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177:6192–6198

    Article  CAS  PubMed  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJM (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH, Geary CD, O’Sullivan TE, van den Brink MR, Pamer EG, Hanash AM et al (2014) Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211:1723–1731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 1–13

    Google Scholar 

  • Grégoire C, Cognet C, Chasson L, Coupet C-A, Dalod M, Reboldi A, Marvel J, Sallusto F, Vivier E, Walzer T (2008) Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation. Eur J Immunol 38:2076–2084

    Article  PubMed  Google Scholar 

  • Gur C, Porgador A, Elboim M, Gazit R, Mizrahi S, Stern-Ginossar N, Achdout H, Ghadially H, Dor Y, Nir T et al (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  • Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F (2012) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37:463–474

    Article  CAS  PubMed  Google Scholar 

  • Hall LJ, Clare S, Dougan G (2010) NK cells influence both innate and adaptive immune responses after mucosal immunization with antigen and mucosal adjuvant. J Immunol 184:4327–4337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hazenberg MD, Spits H (2014) Human innate lymphoid cells. Blood 124:700–709

    Article  CAS  PubMed  Google Scholar 

  • Hecht M-L, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH (2009) Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 8:712–720

    Article  CAS  PubMed  Google Scholar 

  • Hesslein DGT, Lanier LL (2011) Transcriptional control of natural killer cell development and function. Adv Immunol 109:45–85

    Article  CAS  PubMed  Google Scholar 

  • Jarahian M, Fiedler M, Cohnen A, Djandji D, Hämmerling GJ, Gati C, Cerwenka A, Turner PC, Moyer RW, Watzl C et al (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7:e1002195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jost S, Quillay H, Reardon J, Peterson E, Simmons RP, Parry BA, Bryant NNP, Binder WD, Altfeld M (2011) Changes in cytokine levels and NK cell activation associated with influenza. PLoS ONE 6:e25060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamizono S, Duncan G, Seidel M, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind E, Haight J, Ohashi P et al (2009). Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med

    Google Scholar 

  • Kashiwada M, Levy DM, McKeag L, Murray K, Schröder AJ, Canfield SM, Traver G, Rothman PB (2010) IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci USA 107:821–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawase I, Brooks CG, Kuribayashi K, Olabuenaga S, Newman W, Gillis S, Henney CS (1983) Interleukin 2 induces gamma-interferon production: participation of macrophages and NK-like cells. J Immunol 131:288–292

    CAS  PubMed  Google Scholar 

  • Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97:2731–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Song Y-J, Higuchi DA, Kang HP, Pratt JR, Yang L, Hong CM, Poursine-Laurent J, Iizuka K, French AR et al (2006) Arrested natural killer cell development associated with transgene insertion into the Atf2 locus. Blood 107:1024–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, Hisamatsu T, Hansen JJ, Doty KR, Pope SD, Smale ST et al (2011) NFIL3 Is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol 186:4649–4655

    Google Scholar 

  • Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Ikizawa K, Hu D, Werneck MBF, Wucherpfennig KW, Cantor H (2007) Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity 26:593–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26:503–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR, Lord GM, Wack A, Brady HJM (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211:635–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson MA, Kekäläinen E, Johansson H, Mjösberg J, Westgren M, Lankisch TO et al (2015) Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 194:2467–2471

    Article  CAS  PubMed  Google Scholar 

  • Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  PubMed  Google Scholar 

  • Matta J, Baratin M, Chiche L, Forel J-M, Cognet C, Thomas G, Farnarier C, Piperoglou C, Papazian L, Chaussabel D et al (2013) Induction of B7-H6, a ligand for the natural killer cell-activating receptor NKp30, in inflammatory conditions. Blood 122:394–404

    Article  CAS  PubMed  Google Scholar 

  • Mavoungou E, Held J, Mewono L, Kremsner PG (2007) A Duffy binding-like domain is involved in the NKp30-mediated recognition of Plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis 195:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Mckenzie ANJ, Spits H, Eberl G (2014) Innate lymphoid cells in inflammation and immunity. Immunity 41:366–374

    Article  CAS  PubMed  Google Scholar 

  • Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+ CD3 LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504

    Article  CAS  PubMed  Google Scholar 

  • Merzoug LB, Marie S, Satoh-Takayama N, Lesjean S, Albanesi M, Luche H, Fehling HJ, Santo JPD, Vosshenrich CAJ (2014) Conditional ablation of NKp46(+) cells using a novel Ncr1(greenCre) mouse strain: NK cells are essential for protection against pulmonary B16 metastases. Eur J Immunol 44:3380–3391

    Article  PubMed  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  CAS  PubMed  Google Scholar 

  • Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J-I, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544

    Article  CAS  PubMed  Google Scholar 

  • Narni-Mancinelli E, Chaix J, Fenis A, Kerdiles YM, Yessaad N, Reynders A, Grégoire C, Luche H, Ugolini S, Tomasello E et al (2011) Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc Natl Acad Sci USA 108:18324–18329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narni-Mancinelli E, Jaeger BN, Bernat C, Fenis A, Kung S, De Gassart A, Mahmood S, Gut M, Heath SC, Estelle J et al (2012) Tuning of natural killer cell reactivity by NKp46 and helios calibrates T cell responses. Science 335:344–348

    Article  CAS  PubMed  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, Bucks C, Kane CM, Fallon PG, Pannell R et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabinovich BA, Li J, Shannon J, Hurren R, Chalupny J, Cosman D, Miller RG (2003) Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells. J Immunol 170:3572–3576

    Article  CAS  PubMed  Google Scholar 

  • Robbins SH, Bessou G, Cornillon A, Zucchini N, Rupp B, Ruzsics Z, Sacher T, Tomasello E, Vivier E, Koszinowski UH et al (2007) Natural killer cells promote early CD8 T cell responses against cytomegalovirus. PLoS Pathog 3:e123

    Article  PubMed Central  PubMed  Google Scholar 

  • Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S, Colonna M, The Immunological Genome Consortium, the Immunological Genome Consortium (2015) Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol

    Google Scholar 

  • Roder J, Duwe A (1979) The beige mutation in the mouse selectively impairs natural killer cell function. Nature 278:451–453

    Article  CAS  PubMed  Google Scholar 

  • Rydyznski C, Daniels KA, Karmele EP, Brooks TR, Mahl SE, Moran MT, Li C, Sutiwisesak R, Welsh RM, Waggoner SN (2015) Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nature Commun 6:6375

    Article  CAS  Google Scholar 

  • Sathe P et al (2014) Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 5:4539. doi:10.1038/ncomms5539

    Article  CAS  PubMed  Google Scholar 

  • Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention J-J, Thiam K, Cerf-Bensussan N, Mandelboim O et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970

    Article  CAS  PubMed  Google Scholar 

  • Satoskar AR, Stamm LM, Zhang X, Okano M, David JR, Terhorst C, Wang B (1999a) NK cell-deficient mice develop a Th1-like response but fail to mount an efficient antigen-specific IgG2a antibody response. J Immunol 163:5298–5302

    CAS  PubMed  Google Scholar 

  • Satoskar AR, Stamm LM, Zhang X, Satoskar AA, Okano M, Terhorst C, David JR, Wang B (1999b) Mice lacking NK cells develop an efficient Th1 response and control cutaneous Leishmania major infection. J Immunol 162:6747–6754

    CAS  PubMed  Google Scholar 

  • Saxena RK, Saxena QB, Adler WH (1982) Defective T-cell response in beige mutant mice. Nature 295:240–241

    Article  CAS  PubMed  Google Scholar 

  • Scharton TM, Scott P (1993) Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med 178:567–577

    Article  CAS  PubMed  Google Scholar 

  • Schuster IS, Wikstrom ME, Brizard G, Coudert JD, Estcourt MJ, Manzur M, O’Reilly LA, Smyth MJ, Trapani JA, Hill GR et al (2014) TRAIL(+) NK cells control CD4(+) T cell responses during chronic viral infection to limit autoimmunity. Immunity 41:646–656

    Article  CAS  PubMed  Google Scholar 

  • Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, Huntington ND, Belz GT, Carotta S (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211:1733–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soderquest K, Walzer T, Zafirova B, Klavinskis LS, Polić B, Vivier E, Lord GM, Martín-Fontecha A (2011) Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 186:3304–3308

    Article  CAS  PubMed  Google Scholar 

  • Sojka DK, Tian Z, Yokoyama WM (2014) Tissue-resident natural killer cells and their potential diversity. Semin Immunol

    Google Scholar 

  • Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, Mckenzie ANJ, Mebius RE et al (2013) Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  CAS  PubMed  Google Scholar 

  • Su HC, Nguyen KB, Salazar-Mather TP, Ruzek MC, Dalod MY, Biron CA (2001) NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31:3048–3055

    Article  CAS  PubMed  Google Scholar 

  • Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 11:645–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134:984–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voehringer D, Liang H-E, Locksley RM (2008) Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J Immunol 180:4742–4753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM (2010) Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J Clin Invest 120:1925–1938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waggoner SN, Cornberg M, Selin LK, Welsh RM (2011) Natural killer cells act as rheostats modulating antiviral T cells. Nature

    Google Scholar 

  • Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L et al (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 104:3384–3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Ellison CA, Gartner JG, HayGlass KT (1998) Natural killer cell depletion fails to influence initial CD4 T cell commitment in vivo in exogenous antigen-stimulated cytokine and antibody responses. J Immunol 160:1098–1105

    CAS  PubMed  Google Scholar 

  • Wilder JA, Koh CY, Yuan D (1996) The role of NK cells during in vivo antigen-specific antibody responses. J Immunol 156:146–152

    CAS  PubMed  Google Scholar 

  • Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U et al (2012) Transcription factor RORα is critical for nuocyte development. Nat Immunol 13:229–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, Sharma P, Deenen R, Köhrer K, Rahbar R, Diefenbach A et al (2014) Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40:949–960

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V et al (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 1–23

    Google Scholar 

  • Yuan D, Bibi R, Dang T (2004) The role of adjuvant on the regulatory effects of NK cells on B cell responses as revealed by a new model of NK cell deficiency. Int Immunol 16:707–716

    Article  CAS  PubMed  Google Scholar 

  • Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2004) Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol 173:3716–3724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

EV lab is supported by the European Research Council (THINK Advanced Grant), the Ligue Nationale contre le Cancer (Equipe Labellisée) and by institutional grants from INSERM, CNRS and Aix-Marseille University to CIML. F. D. was supported by a grant form SANOFI. E.V. is a scholar of the Institut Universitaire de France.

Competing financial interests: E.V. is the cofounder and a shareholder of Innate Pharma. F.D. and N.B. are employees of SANOFI-Pasteur. The other authors have no conflicting financial interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Kerdiles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deauvieau, F., Fenis, A., Dalençon, F., Burdin, N., Vivier, E., Kerdiles, Y. (2015). Lessons from NK Cell Deficiencies in the Mouse. In: Vivier, E., Di Santo, J., Moretta, A. (eds) Natural Killer Cells. Current Topics in Microbiology and Immunology, vol 395. Springer, Cham. https://doi.org/10.1007/82_2015_473

Download citation

Publish with us

Policies and ethics