Skip to main content

Evolution of RNA-Based Networks

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

RNA molecules have served for decades as a paradigmatic example of molecular evolution that is tractable both in in vitro experiments and in detailed computer simulation. The adaptation of RNA sequences to external selection pressures is well studied and well understood. The de novo innovation or optimization of RNA aptamers and riboswitches in SELEX experiments serves as a case in point. Likewise, fitness landscapes building upon the efficiently computable RNA secondary structures have been a key toward understanding realistic fitness landscapes. Much less is known, however, on models in which multiple RNAs interact with each other, thus actively influencing the selection pressures acting on them. From a computational perspective, RNA–RNA interactions can be dealt with by same basic methods as the folding of a single RNA molecule, although many details become more complicated. RNA–RNA interactions are frequently employed in cellular regulation networks, e.g., as miRNA bases mRNA silencing or in the modulation of bacterial mRNAs by small, often highly structured sRNAs. In this chapter, we summarize the key features of networks of replicators. We highlight the differences between quasispecies-like models describing templates copied by an external replicase and hypercycle similar to autocatalytic replicators. Two aspects are of importance: the dynamics of selection within a population, usually described by conventional dynamical systems, and the evolution of replicating species in the space of chemical types. Product inhibition plays a key role in modulating selection dynamics from survival of the fittest to extinction of unfittest. The sequence evolution of replicators is rather well understood as approximate optimization in a fitness landscape for templates that is shaped by the sequence-structure map of RNA. Some of the properties of this map, in particular shape space covering and extensive neutral networks, give rise to evolutionary patterns such as drift-like motion in sequence space, akin to the behavior of RNA quasispecies. In contrast, very little is known about the influence of sequence-structure maps on autocatalytic replication systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acevedo A, Brodsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505:686–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aita T, Hamamatsu N, Nomiya Y, Uchiyama H, Shibanaka Y, Husimi Y (2002) Surveying a local fitness landscape of a protein with epistatic sites for the study of directed evolution. Biopolymers 64:95–105

    Article  CAS  PubMed  Google Scholar 

  • Aita T, Uchiyama H, Inaoka T, Nakajima M, Kokubo T, Husimi Y (2000) Analysis of a local fitness landscape with a model of the rough Mt. Fuji-type landscape: application to prolyl endopeptidase and thermolysin. Biopolymers 54:64–79

    Article  CAS  PubMed  Google Scholar 

  • Athavale SS, Spicer B, Chen IA (2014) Experimental fitness landscapes to understand the molecular evolution of RNA-based life. Curr Opin Chem Biol 22C:35–39

    Article  Google Scholar 

  • Babajide A, Hofacker IL, Sippl MJ, Stadler PF (1997) Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force. Fold Des 2:261–269

    Article  CAS  PubMed  Google Scholar 

  • Backofen R (2014) Computational prediction of RNA–RNA interactions. Methods Mol Biol 1097:417–435

    Article  CAS  PubMed  Google Scholar 

  • Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1:3 (epub)

    Google Scholar 

  • Biebricher CK, Eigen M (1988) Kinetics of RNA replication by replicase. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics. RNA directed virus replication, vol I. CRC Press, Boca Raton, FL, pp 1–21

    Google Scholar 

  • Biebricher CK, Luce R (1992) In vitro recombination and terminal elongation of RNA by replicase. EMBO J 11:5129–5135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan HS, Bornberg-Bauer E (2002) Perspectives on protein evolution from simple exact models. Appl Bioinf 1:121–144

    CAS  Google Scholar 

  • Dimitrov RA, Zuker M (2004) Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J 87:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle. Springer, New York

    Book  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Erlich HA (ed) (1989) PCR technology. Principles and applications for DNA amplification. Stockton Press, New York

    Google Scholar 

  • Fahy E, Kwoh DY, Gingeras TR (1991) Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Methods Appl 1:25–33

    Article  CAS  PubMed  Google Scholar 

  • Ferretti AC, Joyce GF (2013) Kinetic properties of an RNA enzyme that undergoes self-sustained exponential amplification. Biochemistry 52:1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamm C, Stadler BMR, Stadler PF (2007) Saddles and barrier in landscapes of generalized search operators. In: Stephens CR, Toussaint M, Whitley D, Stadler PF (eds) Foundations of Genetic Algortithms IX. Lecture Notes Computer Science. 9th International Workshop, FOGA 2007, Mexico City, Mexico, vol 4436. Springer, Berlin, Heidelberg, 8–11 Jan 2007, pp 194–212

    Google Scholar 

  • Fontana W, Buss LW (1994) What would be conserved “if the tape were played twice”. Proc Natl Acad Sci USA 91:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana W, Griesmacher T, Schnabl W, Stadler PF, Schuster P (1991) Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures. Monatsh Chem 122:795–819

    Article  CAS  Google Scholar 

  • Fontana W, Konings DAM, Stadler PF, Schuster P (1993a) Statistics of RNA secondary structures. Biopolymers 33:1389–1404

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998) Continuity in evolution: on the nature of transitions. Science 280:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Stadler PF, Bornberg-Bauer EG, Griesmacher T, Hofacker IL, Tacker M, Tarazona P, Weinberger ED, Schuster P (1993b) RNA folding landscapes and combinatory landscapes. Phys Rev E 47:2083–2099

    Article  CAS  Google Scholar 

  • Forst CV (2000) Molecular evolution of catalysis. J Theor Biol 205:409–431

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Gorodkin J, Ruzzo WL (2014) RNA sequence, structure, and function: computational and bioinformatic methods. Humana Press, New York City

    Google Scholar 

  • Gruener W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, Stadler PF, Schuster P (1996a) Analysis of RNA sequence structure maps by exhaustive enumeration. I neutral networks. Monath Chem 127:355–374

    Article  CAS  Google Scholar 

  • Gruener W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, Stadler PF, Schuster P (1996b) Analysis of RNA sequence structure maps by exhaustive enumeration. II. structures of neutral networks and shape space covering. Monath Chem 127:375–389

    Article  CAS  Google Scholar 

  • Happel R, Stadler PF (1999) Autocatalytic replication in a CSTR and constant organization. J Math Biol 38:422–434

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Aita T, Toyota H, Husimi Y, Urabe I, Yomo T (2006) Experimental rugged fitness landscape in protein sequence space. PLoS ONE 1:e96

    Article  PubMed  PubMed Central  Google Scholar 

  • Hietpas RT, Jensen JD, Bolon DN (2011) Experimental illumination of a fitness landscape. Proc Natl Acad Sci USA 108:7896–7901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Dynamical systems and the theory of evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Hordijk W, Kauffman SA, Steel M (2011) Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Int J Mol Sci 12:3085–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hordijk W, Steel M, Kauffman S (2012) The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor 60:379–392

    Article  PubMed  Google Scholar 

  • Hordijk W, Wills PR, Steel MA (2014) Autocatalytic sets and biological specificity. Bull Math Biol 76:201–224

    Article  CAS  PubMed  Google Scholar 

  • Huynen MA (1996) Exploring phenotype space through neutral evolution. J Mol Evol 43:165–169

    Article  CAS  PubMed  Google Scholar 

  • Huynen MA, Stadler PF, Fontana W (1996) Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci (USA) 93:397–401

    Article  CAS  Google Scholar 

  • Jimenez JI, Xulvi-Brunet R, Campbell G, Turk-MacLeod R, Chen IA (2013) Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc Natl Acad Sci USA 110:14984–14989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauffman S (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S (2012) Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet 8:e1002551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer FR, Mills DR, Cole PE, Nishihara T, Spiegelman S (1974) Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. J Mol Biol 89:719–736

    Article  CAS  PubMed  Google Scholar 

  • Lauring AS, Andino R (2011) Exploring the fitness landscape of an RNA virus by using a universal barcode microarray. J Virol 85:3780–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528

    Article  CAS  PubMed  Google Scholar 

  • Levine HA, Nilsen-Hamilton M (2007) A mathematical analysis of SELEX. Comp Biol Chem 31:11–35

    Article  CAS  Google Scholar 

  • Li T, Nicolaou KC (1994) Chemical self-replication of palindromic duplex DNA. Nature 369:218–221

    Article  CAS  PubMed  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobkovsky AE, Wolf Y, Koonin EV (2011) Predictability of evolutionary trajectories in fitness landscapes. PLoS Comput Biol 7:e1002302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Alg Mol Biol 6:26

    Article  Google Scholar 

  • Luthra R, Medeiros LJ (2004) Isothermal multiple displacement amplification: a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. J Mol Diagn 6:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullis KB, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski J, Plotkin JB (2014) Inferring fitness landscapes by regression produces biased estimates of epistasis. Proc Natl Acad Sci USA 111:E2301–E2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul N, Joyce GF (2002) A self-replicating ligase ribozyme. Proc Natl Acad Sci USA 99:12733–12740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt JN, Ferré-D’Amaré AR (2010) Rapid construction of empirical RNA fitness landscapes. Science 330:376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plöger TA, Kiedrowski G (2014) A self-replicating peptide nucleic acid. Org Biomol Chem 12:6908–6914

    Article  PubMed  Google Scholar 

  • Rasmussen S, Chen L, Nilsson M, Abe S (2003) Bridging nonliving to living matter. Artif Life 9:269–316

    Article  PubMed  Google Scholar 

  • Reetz MT, Sanchis J (2008) Constructing and analyzing the fitness landscape of an experimental evolutionary process. ChemBioChem 9:2260–2267

    Article  CAS  PubMed  Google Scholar 

  • Reidys C, Stadler PF, Schuster P (1997) Generic properties of combinatory maps: Neutral networks of RNA secondary structures. Bull Math Biol 59:339–397

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Joyce GF (2014) Highly efficient self-replicating RNA enzymes. Chem Biol 21:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero PA, Krause A, Arnold FH (2013) Navigating the protein fitness landscape with Gaussian processes. Proc Natl Acad Sci USA 110:E193–E201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe W, Platt M, Wedge DC, Day PJ, Kell DB, Knowles J (2010) Analysis of a complete DNA-protein affinity landscape. J R Soc Interface 7:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultes EA, Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448–452

    Article  CAS  PubMed  Google Scholar 

  • Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Roy Soc Lond B 255:279–284

    Article  CAS  Google Scholar 

  • Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100:533–538

    Article  Google Scholar 

  • Segel LA, Slemrod M (1989) The quasi-steady state assumption: a case study in perturbation. SIAM Rev 31:446–477

    Article  Google Scholar 

  • Smith JI, Steel M, Hordijk W (2014) Autocatalytic sets in a partitioned biochemical network. J Syst Chem 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Gesell T, Stadler PF, Mattick JS (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41:8220–8236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler BMR (2002) Diffusion of a population of interacting replicators in sequence space. Adv Complex Syst 5(4):457–461

    Article  Google Scholar 

  • Stadler BMR, Stadler PF, Schuster P (2000) Dynamics of autocatalytic replicator networks based on higher order ligation reactions. Bull Math Biol 62:1061–1086

    Article  CAS  PubMed  Google Scholar 

  • Stadler PF, Schuster P (1992) Mutation in autocatalytic networks—an analysis based on perturbation theory. J Math Biol 30:597–631

    Article  CAS  PubMed  Google Scholar 

  • Stephan-Otto Attolini C, Stadler PF (2006) Evolving towards the hypercycle: a spatial model of molecular evolution. Physica D 217:134–141

    Article  Google Scholar 

  • Szathmáry E, Gladkih I (1989) Sub-exponential growth and coexistence of non-enzymatically replicating templates. J Theor Biol 138:55–58

    Article  PubMed  Google Scholar 

  • Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J (2006) Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 16:885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38D:280–282

    Article  Google Scholar 

  • Varga S, Szathmáry E (1997) An extremum principle for parabolic competition. Bull Math Biol 59:1145–1154

    Article  Google Scholar 

  • von Kiedrowski G (1986) A self-replicating hexadeoxynucleotide. Angew Chem Int Ed Engl 25:932–935

    Article  Google Scholar 

  • Wills PR, Kauffman SA, Stadler BM, Stadler PF (1998) Selection dynamics in autocatalytic systems: templates replicating through binary ligation. Bull Math Biol 60:1073–1098

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Reifman J (2014) Quantitative modeling of virus evolutionary dynamics and adaptation in serial passages using empirically inferred fitness landscapes. J Virol 88:1039–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stadler, P.F. (2015). Evolution of RNA-Based Networks. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_470

Download citation

Publish with us

Policies and ethics