Skip to main content

Epithelial Cell Death and Inflammation in Skin

  • Chapter
  • First Online:
Apoptotic and Non-apoptotic Cell Death

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 403))

Abstract

The presence of dying cells in inflamed tissues has been recognized since many years, but until recently cell death was considered primarily a consequence of inflammation. Recent data in mouse models suggest that cell death could provide a potent trigger of inflammation. The identification of necroptosis as a new type of regulated necrotic cell death that is induced by death receptors, toll like receptors and type I interferon receptor indicated that necroptosis could contribute to the proinflammatory properties of these receptors. This is particularly relevant to the skin, a tissue that provides a life-sustaining structural and immunological barrier with the environment and is constantly exposed to mechanical, chemical, and microbial insults. Studies in mouse models showed that sensitization of keratinocytes to apoptosis or necroptosis triggered by TNF and other stimuli causes severe chronic inflammatory skin lesions. In addition, keratinocyte death is a prominent histopathological feature of many inflammatory skin diseases, suggesting that death of epithelial cells could contribute to the pathogenesis of skin inflammation . Here we review recent studies in genetic mouse models providing evidence that keratinocyte death is a potent trigger of skin inflammation and discuss their potential relevance for human inflammatory skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonopoulos C, El Sanadi C, Kaiser WJ et al (2013) Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1beta via caspase-8 in dendritic cells. J Immunol 191(9):4789–4803

    Article  CAS  PubMed  Google Scholar 

  • Beg AA, Sha WC, Bronson RT et al (1995) Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 9(22):2736–2746

    Article  CAS  PubMed  Google Scholar 

  • Bonnet MC, Preukschat D, Welz PS et al (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35(4):572–582

    Article  CAS  PubMed  Google Scholar 

  • Bossaller L, Chiang PI, Schmidt-Lauber C et al (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189(12):5508–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Bhoj V, Seth RB (2006) Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13(5):687–692

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannappel M, Vlantis K, Kumari S et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Meglio P, Perera GK, Nestle FO (2011) The multitasking organ: recent insights into skin immune function. Immunity 35(6):857–869

    Article  PubMed  Google Scholar 

  • Dillon CP, Weinlich R, Rodriguez DA et al (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach B, Cordier SM, Schmukle AC et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471(7340):591–596

    Article  CAS  PubMed  Google Scholar 

  • Gijbels MJ, Zurcher C, Kraal G et al (1996) Pathogenesis of skin lesions in mice with chronic proliferative dermatitis (cpdm/cpdm). Am J Pathol 148(3):941–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gniadecki R, Jemec GB, Thomsen BM et al (1998) Relationship between keratinocyte adhesion and death: anoikis in acantholytic diseases. Arch Dermatol Res 290(10):528–532

    Article  CAS  PubMed  Google Scholar 

  • Gurung P, Anand PK, Malireddi RK et al (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol 192(4):1835–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AL (2009) Linear polyubiquitylation: the missing link in NF-kappaB signalling. Nat Cell Biol 11(2):116–118

    Article  CAS  PubMed  Google Scholar 

  • Haas TL, Emmerich CH, Gerlach B et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36(5):831–844

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    Article  CAS  PubMed  Google Scholar 

  • He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  • He S, Liang Y, Shao F et al (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108(50):20054–20059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda F, Deribe YL, Skanland SS et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471(7340):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WJ, Sridharan H, Huang C et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima K, Doi H, Ito Y et al (2004) Evaluation of cell death and proliferation in psoriatic epidermis. J Dermatol Sci 35(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Klement JF, Rice NR, Car BD et al (1996) IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 16(5):2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko A, Kim JC, Kang TB et al (2009) Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206(10):2161–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Bonnet MC, Ulvmar MH et al (2013) Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 39(5):899–911

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Redouane Y, Lopez-Mosqueda J et al (2014) Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLife 3:e03422

    Google Scholar 

  • Lee P, Lee DJ, Chan C et al (2009) Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458(7237):519–523

    Article  CAS  PubMed  Google Scholar 

  • Leonardi CL, Powers JL, Matheson RT et al (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349(21):2014–2022

    Article  CAS  PubMed  Google Scholar 

  • Lind MH, Rozell B, Wallin RP et al (2004) Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc Natl Acad Sci U S A 101(14):4972–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippens S, Kockx M, Knaapen M et al (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7(12):1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Lippens S, Denecker G, Ovaere P et al (2005) Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12(Suppl 2):1497–1508

    Article  CAS  PubMed  Google Scholar 

  • Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445(7130):866–873

    Article  CAS  PubMed  Google Scholar 

  • Maelfait J, Vercammen E, Janssens S et al (2008) Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J Exp Med 205(9):1967–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makris C, Godfrey VL, Krahn-Senftleben G et al (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5(6):969–979

    Article  CAS  PubMed  Google Scholar 

  • McComb S, Cessford E, Alturki NA et al (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci U S A 111(31):E3206–E3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan CE, Schwartz LM (1997) Programmed cell death during animal development. Br Med Bull 53(3):570–590

    Article  CAS  PubMed  Google Scholar 

  • Murphy JM, Czabotar PE, Hildebrand JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Nenci A, Huth M, Funteh A et al (2006) Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet 15(4):531–542

    Article  CAS  PubMed  Google Scholar 

  • Nestle FO, Di Meglio P, Qin JZ et al (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panayotova-Dimitrova D, Feoktistova M, Ploesser M et al (2013) cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep 5(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    Article  CAS  PubMed  Google Scholar 

  • Pasparakis M, Courtois G, Hafner M et al (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417(6891):861–866

    Article  CAS  PubMed  Google Scholar 

  • Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289–301

    Article  CAS  PubMed  Google Scholar 

  • Philip NH, Dillon CP, Snyder AG et al (2014) Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc Natl Acad Sci U S A 111(20):7385–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polykratis A, Hermance N, Zelic M et al (2014) Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol 193(4):1539–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput A, Kovalenko A, Bogdanov K et al (2011) RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34(3):340–351

    Article  CAS  PubMed  Google Scholar 

  • Rebholz B, Haase I, Eckelt B et al (2007) Crosstalk between keratinocytes and adaptive immune cells in an IκBα protein-mediated inflammatory disease of the skin. Immunity 27(2):296–307

    Article  CAS  PubMed  Google Scholar 

  • Rickard JA, Anderton H, Etemadi N et al (2014a) TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3:e03464

    Google Scholar 

  • Rickard JA, O’Donnell JA, Evans JM et al (2014b) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Supprian M, Bloch W, Courtois G et al (2000) NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 5(6):981–992

    Article  CAS  PubMed  Google Scholar 

  • Seitz CS, Lin Q, Deng H et al (1998) Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc Natl Acad Sci U S A 95(5):2307–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour RE, Hasham MG, Cox GA et al (2007) Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 8(5):416–421

    Article  CAS  PubMed  Google Scholar 

  • Smahi A, Courtois G, Vabres P et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405(6785):466–472

    Article  CAS  PubMed  Google Scholar 

  • Stratis A, Pasparakis M, Rupec RA et al (2006) Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest 116(8):2094–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  • Thapa RJ, Nogusa S, Chen P et al (2013) Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 110(33):E3109–E3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga F, Nakagawa T, Nakahara M et al (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471(7340):633–636

    Article  CAS  PubMed  Google Scholar 

  • Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hogerlinden M, Rozell BL, Ahrlund-Richter L et al (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59(14):3299–3303

    PubMed  Google Scholar 

  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S et al (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Declercq W, Van Herreweghe F et al (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3(115):re4

    Google Scholar 

  • Vince JE, Wong WW, Gentle I et al (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36(2):215–227

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun L, Su L et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146

    Article  CAS  PubMed  Google Scholar 

  • Weinlich R, Oberst A, Dillon CP et al (2013) Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep 5(2):340–348

    Article  CAS  PubMed  Google Scholar 

  • Weng D, Marty-Roix R, Ganesan S et al (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci U S A 111(20):7391–7396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10(4):348–355

    Article  CAS  PubMed  Google Scholar 

  • Wrone-Smith T, Johnson T, Nelson B et al (1995) Discordant expression of Bcl-x and Bcl-2 by keratinocytes in vitro and psoriatic keratinocytes in vivo. Am J Pathol 146(5):1079–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Jitkaew S, Cai Z et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109(14):5322–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is funded by the ERC (2012-ADG_20120314), the DFG (SFB670, SFB829, SPP1656), the European Commission [Grants 223404 (Masterswitch) and 223151 (InflaCare)], the Deutsche Krebshilfe, the Else Kröner-Fresenius-Stiftung and the Helmholtz Alliance (PCCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Pasparakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumari, S., Pasparakis, M. (2015). Epithelial Cell Death and Inflammation in Skin. In: Nagata, S., Nakano, H. (eds) Apoptotic and Non-apoptotic Cell Death. Current Topics in Microbiology and Immunology, vol 403. Springer, Cham. https://doi.org/10.1007/82_2015_466

Download citation

Publish with us

Policies and ethics