Noncoding Transcriptional Landscape in Human Aging

  • Marina C. Costa
  • Ana Lúcia Leitão
  • Francisco J. Enguita
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 394)


Aging is a universal phenomenon in metazoans, characterized by a general decline of the organism physiology associated with an increased risk of mortality and morbidity. Aging of an organism correlates with a decline in function of its cells, as shown for muscle, immune, and neuronal cells. As the DNA content of most cells within an organism remains largely identical throughout the life span, age-associated transcriptional changes must be achieved by epigenetic mechanisms. However, how aging may impact on the epigenetic state of cells is only beginning to be understood. In light of a growing number of studies demonstrating that noncoding RNAs can provide molecular signals that regulate expression of protein-coding genes and define epigenetic states of cells, we hypothesize that noncoding RNAs could play a direct role in inducing age-associated profiles of gene expression. In this context, the role of long noncoding RNAs (lncRNAs) as regulators of gene expression might be important for the overall transcriptional landscape observed in aged human cells. The possible functions of lncRNAs and other noncoding RNAs, and their roles in the regulation of aging-related cellular pathways will be analyzed.


Noncoding RNAs Senescent Cell Replicative Senescence Molecular Damage Natural Antisense Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG, Gorospe M (2013) Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell 12(5):890–900PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26PubMedCrossRefGoogle Scholar
  3. Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, Dienemann H, Dyckhoff G, Herold-Mende C, Grummt I, Niehrs C, Plass C (2014) Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 55(4):604–614PubMedCrossRefGoogle Scholar
  4. Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM (2011) miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61(6):1315–1322PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bates DJ, Li N, Liang R, Sarojini H, An J, Masternak MM, Bartke A, Wang E (2009a) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging CellGoogle Scholar
  7. Bates DJ, Liang R, Li N, Wang E (2009b) The impact of noncoding RNA on the biochemical and molecular mechanisms of aging. Biochim Biophys Acta 1790(10):970–979PubMedCrossRefGoogle Scholar
  8. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22(6):756–769PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106(35):14914–14919PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299(5606):572–574PubMedCrossRefGoogle Scholar
  11. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957PubMedCrossRefGoogle Scholar
  12. Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, Beach DH (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29(15):2262–2271PubMedCrossRefGoogle Scholar
  13. Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M, Ge H, Morimoto RI (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9(3):1135–1150PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brenerman BM, Illuzzi JL, Wilson DM 3rd (2014) Base excision repair capacity in informing healthspan. Carcinogenesis 35(12):2643–2652PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bu D, Yu K, Sun S, Xie C, Skogerbo G, Miao R, Xiao H, Liao Q, Luo H, Zhao G, Zhao H, Liu Z, Liu C, Chen R, Zhao Y (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40 (Database issue):D210–D215Google Scholar
  16. Burgess RC, Misteli T, Oberdoerffer P (2012) DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 24(6):724–730PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8(5):1509–1521PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V (2014) The long non-coding HOTAIR is modulated by cyclic stretch and WNT/beta-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE 9(5):e96577PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang AL, Bitter PH Jr, Qu K, Lin M, Rapicavoli NA, Chang HY (2013) Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Invest Dermatol 133(6):1691PubMedCentralCrossRefGoogle Scholar
  22. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424(6950):805–808PubMedCrossRefGoogle Scholar
  23. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106PubMedCrossRefGoogle Scholar
  24. Coleman PR, Chang G, Hutas G, Grimshaw M, Vadas MA, Gamble JR (2013) Age-associated stresses induce an anti-inflammatory senescent phenotype in endothelial cells. Aging (Albany NY) 5(12):913–924CrossRefGoogle Scholar
  25. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233PubMedCrossRefGoogle Scholar
  26. Court F, Baniol M, Hagege H, Petit JS, Lelay-Taha MN, Carbonell F, Weber M, Cathala G, Forne T (2011) Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res 39(14):5893–5906PubMedPubMedCentralCrossRefGoogle Scholar
  27. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495PubMedCrossRefGoogle Scholar
  28. Cui H, Xie N, Tan Z, Banerjee S, Thannickal VJ, Abraham E, Liu G (2014) The human long noncoding RNA lnc-IL7R regulates the inflammatory response. Eur J Immunol 44(7):2085–2095PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20(24):2159–2168PubMedPubMedCentralCrossRefGoogle Scholar
  30. de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8(1):65–72PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Guerrero N, Boffelli D, Mote P, Martin DI (2013) Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging (Albany NY) 5(2):130–141CrossRefGoogle Scholar
  32. Di Domenico F, Perluigi M, Butterfield DA, Cornelius C, Calabrese V (2010) Oxidative damage in rat brain during aging: interplay between energy and metabolic key target proteins. Neurochem Res 35(12):2184–2192PubMedCrossRefGoogle Scholar
  33. Di Leva G, Croce CM (2013) miRNA profiling of cancer. Curr Opin Genet Dev 23(1):3–11PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ellis BC, Graham LD, Molloy PL (2014) CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta 1843(2):372–386PubMedCrossRefGoogle Scholar
  35. Erol A (2007) Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. BioEssays 29(8):811–818PubMedCrossRefGoogle Scholar
  36. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874PubMedCrossRefGoogle Scholar
  37. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281(7):1750–1758PubMedCrossRefGoogle Scholar
  38. Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D (2013) The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer 12(1):131PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74PubMedCrossRefGoogle Scholar
  40. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9PubMedCrossRefGoogle Scholar
  41. Fukada S, Ma Y, Uezumi A (2014) Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fukui M, Zhu BT (2010) Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic Biol Med 48(6):821–830PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ge D, Han L, Huang S, Peng N, Wang P, Jiang Z, Zhao J, Su L, Zhang S, Zhang Y, Kung H, Zhao B, Miao J (2014) Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy 10(6):957–971PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Long noncoding RNAs (LncRNAs) and the molecular hallmarks of aging. Aging (Albany NY)Google Scholar
  45. Greer EL, Brunet A (2008) Signaling networks in aging. J Cell Sci 121(Pt 4):407–412PubMedCrossRefGoogle Scholar
  46. Grolleau-Julius A, Ray D, Yung RL (2010) The role of epigenetics in aging and autoimmunity. Clin Rev Allergy Immunol 39(1):42–50PubMedPubMedCentralCrossRefGoogle Scholar
  47. Grosshans H, Filipowicz W (2008) Proteomics joins the search for microRNA targets. Cell 134(4):560–562PubMedCrossRefGoogle Scholar
  48. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedPubMedCentralCrossRefGoogle Scholar
  49. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510PubMedPubMedCentralCrossRefGoogle Scholar
  51. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187PubMedCrossRefGoogle Scholar
  52. Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang LP, Jean S, Li C, Huang Q, Katsaros D, Montone KT, Tanyi JL, Lu Y, Boyd J, Nathanson KL, Li H, Mills GB, Zhang L (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26(3):344–357PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huen MS, Chen J (2010) Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 35(2):101–108PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ibanez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M (2006) Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5(3):235–246PubMedCrossRefGoogle Scholar
  55. Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS ONE 7(7):e40028PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jackson SP (2009) The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans 37(Pt 3):483–494PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jiang M, Xiang Y, Wang D, Gao J, Liu D, Liu Y, Liu S, Zheng D (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11(1):29–40PubMedCrossRefGoogle Scholar
  58. Jiao Y, Liu C, Cui FM, Xu JY, Tong J, Qi XF, Wang LL, Zhu W (2015) Long intergenic non-coding RNA induced by X-ray irradiation regulates DNA damage response signaling in the human bronchial epithelial BEAS-2B cell line. Oncol Lett 9(1):169–176PubMedPubMedCentralGoogle Scholar
  59. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, Bronneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Bottger T, Braun T, Seibler J, Bruning JC (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13(4):434–446PubMedCrossRefGoogle Scholar
  61. Jung HJ, Suh Y (2012) MicroRNA in aging: from discovery to biology. Curr Genomics 13(7):548–557PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11(6):453–465PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kato M, Chen X, Inukai S, Zhao H, Slack FJ (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs in C. elegans. RNA 17(10):1804–1820PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464PubMedCrossRefGoogle Scholar
  65. Koerner MV, Pauler FM, Hudson QJ, Santoro F, Sawicka A, Guenzl PM, Stricker SH, Schichl YM, Latos PA, Klement RM, Warczok KE, Wojciechowski J, Seiser C, Kralovics R, Barlow DP (2012) A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted airn macro ncRNA promoter. PLoS Genet 8(3):e1002540PubMedPubMedCentralCrossRefGoogle Scholar
  66. Krawczyk M, Emerson BM (2014) p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife 3:e01776PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kumar PP, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, Lessnick SL, Moon AM (2014) Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. Elife 3Google Scholar
  68. Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN (2009) Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta 1792(4):341–352PubMedCrossRefGoogle Scholar
  69. Li N, Bates DJ, An J, Terry DA, Wang E (2009) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol AgingGoogle Scholar
  70. Li N, Muthusamy S, Liang R, Sarojini H, Wang E (2011) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132(3):75–85PubMedCrossRefGoogle Scholar
  71. Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014a) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111(3):1002–1007PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li Z, Li X, Wu S, Xue M, Chen W (2014b) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105(8):951–955PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liang V, Ullrich M, Lam H, Chew YL, Banister S, Song X, Zaw T, Kassiou M, Gotz J, Nicholas HR (2014) Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell Mol Life Sci 71(17):3339–3361PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbo G, Wu Z, Zhao Y (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39(9):3864–3878PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lieberman HB (2008) DNA damage repair and response proteins as targets for cancer therapy. Curr Med Chem 15(4):360–367PubMedCrossRefGoogle Scholar
  76. Light S, Sagit R, Sachenkova O, Ekman D, Elofsson A (2013) Protein expansion is primarily due to indels in intrinsically disordered regions. Mol Biol Evol 30(12):2645–2653PubMedCrossRefGoogle Scholar
  77. Lin ST, Heng MY, Ptacek LJ, Fu YH (2014) Regulation of myelination in the central nervous system by nuclear lamin B1 and non-coding RNAs. Transl Neurodegener 3(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafa R, Song J, Guo Z, Ivan C, Barbarotto E, De Vries I, Zhang X, Ferracin M, Churchman M, van Galen JF, Beverloo BH, Shariati M, Haderk F, Estecio MR, Garcia-Manero G, Patijn GA, Gotley DC, Bhardwaj V, Shureiqi I, Sen S, Multani AS, Welsh J, Yamamoto K, Taniguchi I, Song MA, Gallinger S, Casey G, Thibodeau SN, Le Marchand L, Tiirikainen M, Mani SA, Zhang W, Davuluri RV, Mimori K, Mori M, Sieuwerts AM, Martens JW, Tomlinson I, Negrini M, Berindan-Neagoe I, Foekens JA, Hamilton SR, Lanza G, Kopetz S, Fodde R, Calin GA (2013) CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 23(9):1446–1461PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, Yan B, Jiang Q (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, Shi L, Lu X, Liu Q (2015) Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicol Appl Pharmacol 282(1):9–19PubMedCrossRefGoogle Scholar
  82. Liu Z, Sun LY (2011) Complex roles of Sirtuin 1 in cancer and aging. Transl Res 157(5):273–275PubMedCrossRefGoogle Scholar
  83. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294PubMedCrossRefGoogle Scholar
  85. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891PubMedCrossRefGoogle Scholar
  86. Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2012) Aging and epigenetics: Longitudinal changes in gene-specific DNA methylation. Epigenetics 7 (1)Google Scholar
  87. Mantel C, Broxmeyer HE (2008) Sirtuin 1, stem cells, aging, and stem cell aging. Curr Opin Hematol 15(4):326–331PubMedPubMedCentralCrossRefGoogle Scholar
  88. Maqbool A, Lattke M, Wirth T, Baumann B (2013) Sustained, neuron-specific IKK/NF-kappaB activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging. Mol Neurodegener 8:40PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mari M, Cederbaum AI (2001) Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against short-term oxidative stress. Hepatology 33(3):652–661PubMedCrossRefGoogle Scholar
  90. Martin EC, Bratton MR, Zhu Y, Rhodes LV, Tilghman SL, Collins-Burow BM, Burow ME (2012) Insulin-like growth factor-1 signaling regulates miRNA expression in MCF-7 breast cancer cell line. PLoS ONE 7(11):e49067PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5(4):e1000459PubMedPubMedCentralCrossRefGoogle Scholar
  92. McElwee JJ, Schuster E, Blanc E, Piper MD, Thomas JH, Patel DS, Selman C, Withers DJ, Thornton JM, Partridge L, Gems D (2007) Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol 8(7):R132PubMedPubMedCentralCrossRefGoogle Scholar
  93. Michan S (2014) Calorie restriction and NAD(+)/sirtuin counteract the hallmarks of aging. Front Biosci (Landmark Ed) 19:1300–1319CrossRefGoogle Scholar
  94. Miller BF, Drake JC, Naylor B, Price JC, Hamilton KL (2014) The measurement of protein synthesis for assessing proteostasis in studies of slowed aging. Ageing Res Rev 18C:106–111CrossRefGoogle Scholar
  95. Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I (2004) Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J 23(1):212–220PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181(7):1055–1063PubMedPubMedCentralCrossRefGoogle Scholar
  97. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496PubMedCrossRefGoogle Scholar
  98. Murphy CT (2010) Aging: miRacles of longevity? Curr Biol 20(24):R1076–R1078PubMedCrossRefGoogle Scholar
  99. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS ONE 5(5):e10724PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nunomura A, Moreira PI, Castellani RJ, Lee HG, Zhu X, Smith MA, Perry G (2012) Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox Res 22(3):231–248PubMedCrossRefGoogle Scholar
  101. Olivieri F, Rippo MR, Monsurro V, Salvioli S, Capri M, Procopio AD, Franceschi C (2013a) MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 12(4):1056–1068PubMedCrossRefGoogle Scholar
  102. Olivieri F, Rippo MR, Procopio AD, Fazioli F (2013b) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121PubMedPubMedCentralCrossRefGoogle Scholar
  103. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 106(9):3059–3064PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12(8):2412–2421PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pickard MR, Williams GT (2014) Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 145(2):359–370PubMedCrossRefGoogle Scholar
  106. Poyton RO, Ball KA, Castello PR (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20(7):332–340PubMedCrossRefGoogle Scholar
  107. Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, Sahu A, Malik R, Wilder-Romans K, Navone N, Logothetis CJ, Araujo JC, Pisters LL, Tewari AK, Canman CE, Knudsen KE, Kitabayashi N, Rubin MA, Demichelis F, Lawrence TS, Chinnaiyan AM, Feng FY (2014) PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 74(6):1651–1660PubMedPubMedCentralCrossRefGoogle Scholar
  108. Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A, Bischof O (2014) Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun 5:5323PubMedPubMedCentralCrossRefGoogle Scholar
  109. Qureshi IA, Mehler MF (2011) Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 17(6):337–346PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rattan SI (2008) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389(3):267–272PubMedCrossRefGoogle Scholar
  112. Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, Saetrom P, Devaraj S, Natarajan R (2014) Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 63(12):4249–4261PubMedPubMedCentralCrossRefGoogle Scholar
  113. Satomura S, Yokota I, Tatara K, Naito E, Ito M, Kuroda Y (2001) Paradoxical weight loss with extra energy expenditure at brown adipose tissue in adolescent patients with Duchenne muscular dystrophy. Metabolism 50(10):1181–1185PubMedCrossRefGoogle Scholar
  114. Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 33(11):830–839PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sims-Robinson C, Hur J, Hayes JM, Dauch JR, Keller PJ, Brooks SV, Feldman EL (2013) The role of oxidative stress in nervous system aging. PLoS ONE 8(7):e68011PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sleutels F, Zwart R, Barlow DP (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813PubMedCrossRefGoogle Scholar
  117. Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, Kambadur R, Sharma M (2011) Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-kappaB. Aging Cell 10(6):931–948PubMedCrossRefGoogle Scholar
  118. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81(11):678–699CrossRefGoogle Scholar
  119. Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Steelman LS, McCubrey JA (2011) Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget 2(8):610–626PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104(39):15472–15477PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143(3):390–403PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D, Zheng J (2014) DNA damage response—a double-edged sword in cancer prevention and cancer therapy. Cancer LettGoogle Scholar
  123. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tsakiri EN, Sykiotis GP, Papassideri IS, Terpos E, Dimopoulos MA, Gorgoulis VG, Bohmann D, Trougakos IP (2013) Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 12(5):802–813PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vinas JL, Ventayol M, Brune B, Jung M, Sola A, Pi F, Mastora C, Hotter G (2013) miRNA let-7e modulates the Wnt pathway and early nephrogenic markers in mouse embryonic stem cell differentiation. PLoS ONE 8(4):e60937PubMedPubMedCentralCrossRefGoogle Scholar
  127. Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41(Database issue):D246–D251Google Scholar
  128. Waldera-Lupa DM, Kalfalah F, Florea AM, Sass S, Kruse F, Rieder V, Tigges J, Fritsche E, Krutmann J, Busch H, Boerries M, Meyer HE, Boege F, Theis F, Reifenberger G, Stuhler K (2014) Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging (Albany NY) 6(10):856–878CrossRefGoogle Scholar
  129. Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X, Lu X (2013a) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 32(21):2833–2847PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X (2013b) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25(5):1086–1095PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3):311–323PubMedCrossRefGoogle Scholar
  132. Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, Ma Z, Zhang Y (2014a) LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/beta-catenin signaling pathway. Oncol Rep 31(4):1839–1845PubMedGoogle Scholar
  133. Wang Y, Pang WJ, Wei N, Xiong Y, Wu WJ, Zhao CZ, Shen QW, Yang GS (2014b) Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene 539(1):117–124PubMedCrossRefGoogle Scholar
  134. Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J (2013) Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 48(7):626–633PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wennmalm K, Wahlestedt C, Larsson O (2005) The expression signature of in vitro senescence resembles mouse but not human aging. Genome Biol 6(13):R109PubMedPubMedCentralCrossRefGoogle Scholar
  136. Werner A (2013) Biological functions of natural antisense transcripts. BMC Biol 11:31PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wulff VJ, Quastler H, Sherman FG (1962) An hypothesis concerning RNA metabolism and aging. Proc Natl Acad Sci USA 48:1373–1375PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, White EJ, Orjalo AV, Rinn JL, Kreft SG, Wilson GM, Gorospe M (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yoon JH, De S, Srikantan S, Abdelmohsen K, Grammatikakis I, Kim J, Kim KM, Noh JH, White EJ, Martindale JL, Yang X, Kang MJ, Wood WH 3rd, Noren Hooten N, Evans MK, Becker KG, Tripathi V, Prasanth KV, Wilson GM, Tuschl T, Ingolia NT, Hafner M, Gorospe M (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23(3):340–350PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zou CG, Ma YC, Dai LL, Zhang KQ (2014) Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci USA 111(34):12480–12485PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marina C. Costa
    • 1
  • Ana Lúcia Leitão
    • 2
  • Francisco J. Enguita
    • 1
  1. 1.Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa, Av. Professor Egas MonizLisbonPortugal
  2. 2.Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa, Quinta da TorreCaparicaPortugal

Personalised recommendations