Skip to main content

Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold

  • Chapter
  • First Online:
Quasispecies: From Theory to Experimental Systems

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

The concept of error threshold derived from quasispecies theory is at the basis of lethal mutagenesis, a new antiviral strategy based on the increase of virus mutation rate above an extinction threshold. Research on this strategy is justified by several inhibitor-escape routes that viruses utilize to ensure their survival. Successive steps in the transition from an organized viral quasispecies into loss of biologically meaningful genomic sequences are dissected. The possible connections between theoretical models and experimental observations on lethal mutagenesis are reviewed. The possibility of using combination of virus-specific mutagenic nucleotide analogues and broad-spectrum, non-mutagenic inhibitors is evaluated. We emphasize the power that quasispecies theory has had to stimulate exploration of new means to combat pathogenic viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudo R, Arias A, Pariente N et al (2008) Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. J Mol Biol 382:652–666

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Daifuku R, Loeb LA (2004) Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58:183–205

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Isabel de Avila A, Sanz-Ramos M et al (2013) Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. J Gen Virol 94:817–830

    Article  CAS  PubMed  Google Scholar 

  • Arias A, Thorne L, Goodfellow I (2014) Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 3:e03679

    Google Scholar 

  • Baranovich T, Wong SS, Armstrong J et al (2013) T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 87:3741–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cale EM, Hraber P, Giorgi EE et al (2011) Epitope-specific CD8 + T lymphocytes cross-recognize mutant simian immunodeficiency virus (SIV) sequences but fail to contain very early evolution and eventual fixation of epitope escape mutations during SIV infection. J Virol 85:3746–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 98:6895–6900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 86:5345–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dapp MJ, Patterson SE, Mansky LM (2013) Back to the future: revisiting HIV-1 lethal mutagenesis. Trends Microbiol 21:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  • De Clercq E (2015) Ebola virus (EBOV) infection: therapeutic strategies. Biochem Pharmacol 93:1–10

    Article  PubMed  Google Scholar 

  • Domingo E (2000) Viruses at the edge of adaptation. Virology 270:251–253

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Brun A, Núñez JI et al (2006) Genomics of Viruses. In: Hacker J, Dobrindt U (eds) Pathogenomics: genome analysis of pathogenic microbes. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 369–388

    Google Scholar 

  • Domingo E, Schuster P (2016) What is a quasispecies? Historical origins and current scope. Curr Top Microbiol Immunol doi:10.1007/82_2015_453

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo E (ed) (2005) Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107:115–228

    Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigen M (2013) From strange simplicity to complex amiliarity. Oxford University Press, Oxford

    Book  Google Scholar 

  • Fischer W, Ganusov VV, Giorgi EE et al (2010) Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. PLoS ONE 5:e12303

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerold G, Pietschmann T (2014) The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 32:525–537

    Article  PubMed  Google Scholar 

  • González-López C, Arias A, Pariente N et al (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324

    Article  PubMed  PubMed Central  Google Scholar 

  • González-López C, Gómez-Mariano G, Escarmís C et al (2005) Invariant aphthovirus consensus nucleotide sequence in the transition to error catastrophe. Inf Genet Evol 5:366–374

    Article  Google Scholar 

  • Graci JD, Cameron CE (2008) Therapeutically targeting RNA viruses via lethal mutagenesis. Future Virol 3:553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grande-Pérez A, Gómez-Mariano G, Lowenstein PR et al (2005a) Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79:10451–10459

    Article  PubMed  PubMed Central  Google Scholar 

  • Grande-Pérez A, Lazaro E, Lowenstein P et al (2005b) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci USA 102:4448–4452

    Article  PubMed  PubMed Central  Google Scholar 

  • Grande-Perez, A, Martin V, Moreno H, de la torre JC (2016) Arenavirus quasispecies and their biological implications. Current Topics in Microbiol and immunol. doi:10.1007/82_2015_468

  • Holland JJ, Spindler K, Horodyski F et al (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Domingo E, de la Torre JC et al (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64:3960–3962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iranzo J, Perales C, Domingo E et al (2011) Tempo and mode of inhibitor-mutagen antiviral therapies: a multidisciplinary approach. Proc Natl Acad Sci USA 108:16008–16013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP, Ramirez S, Mikkelsen L et al (2015) Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J Virol 89:811–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenbach BD, Evans MJ, Syder AJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626

    Article  CAS  PubMed  Google Scholar 

  • Loeb LA, Essigmann JM, Kazazi F et al (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96:1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas-Hourani M, Dauzonne D, Jorda P et al (2013) Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 9:e1003678

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno H, Grande-Perez A, Domingo E et al (2012) Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 4:2786–2805

    CAS  PubMed  Google Scholar 

  • Mullins JI, Heath L, Hughes JP et al (2011) Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS ONE 6:e15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nájera I, Holguín A, Quiñones-Mateu ME et al (1995) Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. J Virol 69:23–31

    PubMed  PubMed Central  Google Scholar 

  • Nijhuis M, van Maarseveen NM, Boucher CA (2009) Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb Exp Pharmacol 299–320

    Google Scholar 

  • Oestereich L, Ludtke A, Wurr S et al (2014) Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 105:17–21

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgel LE (1973) Ageing of clones of mammalian cells. Nature 243:441–445

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Prieto AM, Sheldon J, Grande-Perez A et al (2013) Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS ONE 8:e71039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Riano E, Ngo N, Devito S et al (2014) Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J Virol 88:878–889

    Article  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan P, Dixit NM (2016) Models of viral population dynamics. Curr Top Microbiol Immunol. doi:10.1007/82_2015_458

  • Pariente N, Sierra S, Lowenstein PR et al (2001) Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol 75:9723–9730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pariente N, Airaksinen A, Domingo E (2003) Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol 77:7131–7138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perales C, Mateo R, Mateu MG et al (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Perales C, Agudo R, Tejero H et al (2009) Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog 5:e1000658

    Article  PubMed  PubMed Central  Google Scholar 

  • Perales C, Agudo R, Manrubia SC et al (2011a) Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol 407:60–78

    Article  CAS  PubMed  Google Scholar 

  • Perales C, Henry M, Domingo E et al (2011b) Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol 85:12227–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perales C, Iranzo J, Manrubia SC et al (2012) The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 20:595–603

    Article  CAS  PubMed  Google Scholar 

  • Perales C, Beach NM, Gallego I et al (2013) Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol 87:7593–7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perales C, Beach NM, Sheldon J et al (2014) Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 8C:38–44

    Article  Google Scholar 

  • Perales C, Iranzo J, Sheldon J et al (2015) Impact of fitness and inhibition in the response of hepatitis C to lethal mutagenesis (Manuscript in preparation)

    Google Scholar 

  • Richman DD (1996) Antiviral drug resistance. Wiley, New York

    Google Scholar 

  • Ruiz-Jarabo CM, Ly C, Domingo E et al (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:37–47

    Article  CAS  PubMed  Google Scholar 

  • Schuster P (2016) Quasispecies on fitness landscapes. Curr Top Microbiol Immunol. doi:10.1007/82_2015_469

  • Sheldon J, Beach NM, Moreno E et al (2014) Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. J Virol 88:12098–12111

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierra S, Dávila M, Lowenstein PR et al (2000) Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J Virol 74:8316–8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smither SJ, Eastaugh LS, Steward JA et al (2014) Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 104:153–155

    Article  CAS  PubMed  Google Scholar 

  • Steinmeyer SH, Wilke CO (2009) Lethal mutagenesis in a structured environment. J Theor Biol 261:67–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapia N, Fernandez G, Parera M et al (2005) Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology 338:1–8

    Article  CAS  PubMed  Google Scholar 

  • Tejero H, Montero F, Nuño JC (2016) Theories of lethal mutagenesis: from error catastrophe to lethal defection. Curr top Microbiol immunol. doi:10.1007/82_2015_463

  • Tsibris AM, Korber B, Arnaout R et al (2009) Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo. PLoS ONE 4:e5683

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Gastaminza P, Cheng G et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are indebted to many colleagues in our laboratory for their contributions to quasispecies investigation, as reflected in the reference list. Work supported by grants BFU2011-23604 and SAF2014-52400-R from Spanish Ministries, and S2013/ABI-2906 (PLATESA) from Comunidad Autónoma de Madrid and Fundación Ramón Areces. CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. C.P. is supported by the Miguel Servet program of the Instituto de Salud Carlos III (CP14/00121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Domingo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perales, C., Domingo, E. (2015). Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_459

Download citation

Publish with us

Policies and ethics