Skip to main content

Models of Viral Population Dynamics

  • Chapter
  • First Online:
Quasispecies: From Theory to Experimental Systems

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

Models of viral population dynamics have contributed enormously to our understanding of the pathogenesis and transmission of several infectious diseases, the coevolutionary dynamics of viruses and their hosts, the mechanisms of action of drugs, and the effectiveness of interventions. In this chapter, we review major advances in the modeling of the population dynamics of the human immunodeficiency virus (HIV) and briefly discuss adaptations to other viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram ME, Ferris AL, Shao W et al (2010) Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol 84:9864–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adiwijaya BS, Herrmann E, Hare B et al (2010) A multi-variant, viral dynamic model of genotype 1 HCV to assess the in vivo evolution of protease-inhibitor resistant variants. PLoS Comput Biol 6:e1000745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander HK, Bonhoeffer S (2013) Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics. Epidemics 4:187–202

    Article  Google Scholar 

  • Alizon S, Magnus C (2012) Modelling the course of an HIV infection: insights from ecology and evolution. Viruses 4:1984–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Althaus CL, Bonhoeffer S (2005) Stochastic interplay between mutation and recombination during the acquisition of drug resistance mutations in human immunodeficiency virus type 1. J Virol 79:13572–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Dixit NM (2009) Timing the emergence of resistance to anti-HIV drugs with large genetic barriers. PLoS Comput Biol 5:e1000305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asquith B, Edwards CT, Lipsitch M et al (2006) Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol 4:e90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Austin DJ, White NJ, Anderson RM (1998) The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics. J Theor Biol 194:313–339

    Article  CAS  PubMed  Google Scholar 

  • Baccam P, Beauchemin C, Macken CA et al (2006) Kinetics of influenza A virus infection in humans. J Virol 80:7590–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balagam R, Singh V, Sagi AR et al (2011) Taking multiple infections of cells and recombination into account leads to small within-host effective-population-size estimates of HIV-1. PLoS ONE 6:e14531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballana E, Esté J (2012) HIV-1 infection and CCR5Δ32 homozygosis. Future Virol 7:653–658

    Article  CAS  Google Scholar 

  • Batorsky R, Kearney MF, Palmer SE et al (2011) Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. Proc Natl Acad Sci USA 108:5661–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchemin CA, McSharry JJ, Drusano GL et al (2008) Modeling amantadine treatment of influenza A virus in vitro. J Theor Biol 254:439–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder M, Sulaimanov N, Clausznitzer D et al (2013) Replication vesicles are load- and choke-points in the hepatitis C virus lifecycle. PLoS Pathog 9:e1003561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocharov G, Ford NJ, Edwards J et al (2005) A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol 86:3109–3118

    Article  CAS  PubMed  Google Scholar 

  • Boerlijst MC, Bonhoeffer S, Nowak MA (1996) Viral quasi-species and recombination. Proc R Soc Lond B 263:1577–1584

    Google Scholar 

  • Bonhoeffer S, Nowak MA (1997) Pre-existence and emergence of drug resistance in HIV-1 infection. Proc Biol Sci 264:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhoeffer S, May RM, Shaw GM et al (1997) Virus dynamics and drug therapy. Proc Natl Acad Sci USA 94:6971–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhoeffer S, Funk GA, Gunthard HF et al (2003) Glancing behind virus load variation in HIV-1 infection. Trends Microbiol 11:499–504

    Article  CAS  PubMed  Google Scholar 

  • Bretscher MT, Althaus CL, Muller V et al (2004) Recombination in HIV and the evolution of drug resistance: for better or for worse? BioEssays 26:180–188

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ (1997) Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci USA 94:1862–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal-Rodriguez A, Crandall KA, Posada D (2007) Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol 7:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cen S, Peng ZG, Li XY et al (2010) Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. J Biol Chem 285:16546–16552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DB, Young CS (2007) Simple scaling laws for influenza A rise time, duration, and severity. J Theor Biol 246:621–635

    Article  PubMed  Google Scholar 

  • Chatterjee A, Smith PF, Perelson AS (2013) Hepatitis C viral kinetics: the past, present, and future. Clin Liver Dis 17:13–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Christiansen FB, Otto SP, Bergman A et al (1998) Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol 53:199–215

    Article  CAS  PubMed  Google Scholar 

  • Chun TW, Carruth L, Finzi D et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    Article  CAS  PubMed  Google Scholar 

  • Clavel F, Hance AJ (2004) HIV drug resistance. N Engl J Med 350:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Coombs D, Gilchrist MA, Ball CL (2007) Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor Popul Biol 72:576–591

    Article  PubMed  Google Scholar 

  • Dahari H, Ribeiro RM, Perelson AS (2007a) Triphasic decline of hepatitis C virus RNA during antiviral therapy. Hepatology 46:16–21

    Article  CAS  PubMed  Google Scholar 

  • Dahari H, Ribeiro RM, Rice CM et al (2007b) Mathematical modeling of subgenomic hepatitis C virus replication in Huh-7 cells. J Virol 81:750–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dapp MJ, Clouser CL, Patterson S et al (2009) 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol 83:11950–11958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27:406–416

    Article  CAS  PubMed  Google Scholar 

  • Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382:1525–1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit NM, Perelson AS (2004) Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J Theor Biol 226:95–109

    Article  CAS  PubMed  Google Scholar 

  • Dixit NM, Perelson AS (2005) Influence of drug pharmacokinetics on HIV pathogenesis and therapy. In: Wu H, Tan WY (eds) Deterministic and stochastic models on AIDS and HIV with intervention. World Scientific Press, Singapore, pp 287–311

    Chapter  Google Scholar 

  • Dixit NM, Layden-Almer JE, Layden TJ et al (2004) Modelling how ribavirin improves interferon response rates in hepatitis C virus infection. Nature 432:922–924

    Article  CAS  PubMed  Google Scholar 

  • Dixit NM, Srivastava P, Vishnoi NK (2012) A finite population model of molecular evolution: theory and computation. J Comput Biol 19:1176–1202

    Article  CAS  PubMed  Google Scholar 

  • Doyon L, Tremblay S, Bourgon L et al (2005) Selection and characterization of HIV-1 showing reduced susceptibility to the non-peptidic protease inhibitor tipranavir. Antiviral Res 68:27–35

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99:13374–13376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1989) The molecular quasi-species. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  • Ejima T, Hirota M, Mizukami T et al (2011) An anti-HIV-1 compound that increases steady-state expression of apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G. Int J Mol Med 28:613–616

    CAS  PubMed  Google Scholar 

  • Elemans M, Florins A, Willems L et al (2014) Rates of CTL killing in persistent viral infection in vivo. PLoS Comput Biol 10:e1003534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emery VC, Cope AV, Bowen EF et al (1999) The dynamics of human cytomegalovirus replication in vivo. J Exp Med 190:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery VC, Hassan-Walker AF, Burroughs AK et al (2002) Human cytomegalovirus (HCMV) replication dynamics in HCMV-naive and -experienced immunocompromised hosts. J Infect Dis 185:1723–1728

    Article  PubMed  Google Scholar 

  • Fellay J, Ge D, Shianna KV et al (2009) Common genetic variation and the control of HIV-1 in humans. PLoS Genet 5:e1000791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser C (2005) HIV recombination: what is the impact on antiretroviral therapy? J R Soc Interface 2:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser C, Hollingsworth TD, Chapman R et al (2007) Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci USA 104:17441–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser C, Lythgoe K, Leventhal GE et al (2014) Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343:1243727

    Article  PubMed  CAS  Google Scholar 

  • Gadhamsetty S, Dixit NM (2010) Estimating frequencies of minority nevirapine-resistant strains in chronically HIV-1-infected individuals naive to nevirapine by using stochastic simulations and a mathematical model. J Virol 84:10230–10240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadhamsetty S, Maree AF, Beltman JB et al (2014) A general functional response of cytotoxic T lymphocyte-mediated killing of target cells. Biophys J 106:1780–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganusov VV, De Boer RJ (2006) Estimating costs and benefits of CTL escape mutations in SIV/HIV infection. PLoS Comput Biol 2:e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganusov VV, Goonetilleke N, Liu MK et al (2011) Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol 85:10518–10528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghany MG, Nelson DR, Strader DB et al (2011) An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54:1433–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Gheorghiu-Svirschevski S, Rouzine IM, Coffin JM (2007) Increasing sequence correlation limits the efficiency of recombination in a multisite evolution model. Mol Biol Evol 24:574–586

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JB, Kelleher AD, Cooper DA et al (2013) Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action. PLoS Comput Biol 9:e1002971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedj J, Dahari H, Pohl RT et al (2012) Understanding silibinin’s modes of action against HCV using viral kinetic modeling. J Hepatol 56:1019–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedj J, Dahari H, Rong L et al (2013) Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc Natl Acad Sci USA 110:3991–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancioglu B, Swigon D, Clermont G (2007) A dynamical model of human immune response to influenza A virus infection. J Theor Biol 246:70–86

    Article  CAS  PubMed  Google Scholar 

  • Harris KS, Brabant W, Styrchak S et al (2005) KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res 67:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of Population Genetics. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Heim MH (2013a) 25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end. Nat Rev Immunol 13:535–542

    Article  CAS  PubMed  Google Scholar 

  • Heim MH (2013b) Innate immunity and HCV. J Hepatol 58:564–574

    Article  CAS  PubMed  Google Scholar 

  • Heldt FS, Frensing T, Pflugmacher A et al (2013) Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals. PLoS Comput Biol 9:e1003372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herz AV, Bonhoeffer S, Anderson RM et al (1996) Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc Natl Acad Sci USA 93:7247–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  CAS  PubMed  Google Scholar 

  • Hoetelmans RM (1998) Sanctuary sites in HIV-1 infection. Antivir Ther 3(Suppl 4):13–17

    PubMed  Google Scholar 

  • Holder BP, Simon P, Liao LE et al (2011) Assessing the in vitro fitness of an oseltamivir-resistant seasonal A/H1N1 influenza strain using a mathematical model. PLoS ONE 6:e14767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson T, Demicheli V, Rivetti D et al (2006) Antivirals for influenza in healthy adults: systematic review. Lancet 367:303–313

    Article  CAS  PubMed  Google Scholar 

  • Jilek BL, Zarr M, Sampah ME et al (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat Med 18:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VA, Calvez V, Gunthard HF et al (2013) Update of the drug resistance mutations in HIV-1: March 2013. Top Antivir Med 21:6–14

    PubMed  Google Scholar 

  • Josefsson L, King MS, Makitalo B et al (2011) Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc Natl Acad Sci USA 108:11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsson L, Palmer S, Faria NR et al (2013) Single cell analysis of lymph node tissue from HIV-1 infected patients reveals that the majority of CD4+ T-cells contain one HIV-1 DNA molecule. PLoS Pathog 9:e1003432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung A, Maier R, Vartanian JP et al (2002) Recombination: multiply infected spleen cells in HIV patients. Nature 418:144

    Article  CAS  PubMed  Google Scholar 

  • Kosmrlj A, Read EL, Qi Y et al (2010) Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465:350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouyos RD, Althaus CL, Bonhoeffer S (2006) Stochastic or deterministic: what is the effective population size of HIV-1? Trends Microbiol 14:507–511

    Article  CAS  PubMed  Google Scholar 

  • Kouyos RD, Fouchet D, Bonhoeffer S (2009) Recombination and drug resistance in HIV: population dynamics and stochasticity. Epidemics 1:58–69

    Article  PubMed  Google Scholar 

  • Levy DN, Aldrovandi GM, Kutsch O et al (2004) Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 101:4204–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little SJ, McLean AR, Spina CA et al (1999) Viral dynamics of acute HIV-1 infection. J Exp Med 190:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb LA, Essigmann JM, Kazazi F et al (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96:1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldarelli F, Palmer S, King MS et al (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3:e46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malim MH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 364:675–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz M, Louie M, Hurley A et al (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao H, Hollenbaugh JA, Zand MS et al (2010) Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84:6687–6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty U, Dixit NM (2008) Mechanism-based model of the pharmacokinetics of enfuvirtide, an HIV fusion inhibitor. J Theor Biol 251:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohri H, Bonhoeffer S, Monard S et al (1998) Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279:1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Mostowy R, Kouyos RD, Fouchet D et al (2011) The role of recombination for the coevolutionary dynamics of HIV and the immune response. PLoS ONE 6:e16052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins JI, Heath L, Hughes JP et al (2011) Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS ONE 6:e15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo LN, Murillo MS, Perelson AS (2013) Towards multiscale modeling of influenza infection. J Theor Biol 332:267–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathans R, Cao H, Sharova N et al (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher RA, Leitner T (2010) Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput Biol 6:e1000660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann AU, Lam NP, Dahari H et al (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107

    Article  CAS  PubMed  Google Scholar 

  • Nijhuis M, Boucher CA, Schipper P et al (1998) Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. Proc Natl Acad Sci USA 95:14441–14446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, New York

    Google Scholar 

  • Nowak MA, McLean AR (1991) A mathematical model of vaccination against HIV to prevent the development of AIDS. Proc Biol Sci 246:141–146

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, May RM, Anderson RM (1990) The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. Aids 4:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, May RM, Phillips RE et al (1995) Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375:606–611

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Bonhoeffer S, Hill AM et al (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 93:4398–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan P, Dixit NM (2011) Mathematical model of viral kinetics in vitro estimates the number of E2-CD81 complexes necessary for hepatitis C virus entry. PLoS Comput Biol 7:e1002307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan P, Dixit NM (2012) Viral kinetics suggests a reconciliation of the disparate observations of the modulation of Claudin-1 expression on cells exposed to hepatitis C virus. PLoS ONE 7:e36107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan P, Garaigorta U, Dixit NM (2014) Emergent properties of the interferon signaling network may underlie the success of hepatitis C treatment. Nat Commun. doi:10.1038/ncomms4872

    Google Scholar 

  • Palmer S, Maldarelli F, Wiegand A et al (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105:3879–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawelek KA, Huynh GT, Quinlivan M et al (2012) Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 8:e1002588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlotsky JM (2014) New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology. doi:10.1053/j.gastro.2014.03.003

    Google Scholar 

  • Pennings PS (2012) Standing genetic variation and the evolution of drug resistance in HIV. PLoS Comput Biol 8:e1002527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennings PS, Kryazhimskiy S, Wakeley J (2014) Loss and recovery of genetic diversity in adapting populations of HIV. PLoS Genet 10:e1004000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2:28–36

    Article  CAS  PubMed  Google Scholar 

  • Perelson AS, Ribeiro RM (2004) Hepatitis B virus kinetics and mathematical modeling. Semin Liver Dis 24(Suppl 1):11–16

    Article  PubMed  Google Scholar 

  • Perelson AS, Ribeiro RM (2013) Modeling the within-host dynamics of HIV infection. BMC Biol 11:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M et al (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  CAS  PubMed  Google Scholar 

  • Perelson AS, Essunger P, Cao Y et al (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191

    Article  CAS  PubMed  Google Scholar 

  • Phillips AN (1996) Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271:497–499

    Article  CAS  PubMed  Google Scholar 

  • Rabi SA, Laird GM, Durand CM et al (2013) Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 123:3848–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramratnam B, Bonhoeffer S, Binley J et al (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:1782–1785

    Article  CAS  PubMed  Google Scholar 

  • Regoes RR, Wodarz D, Nowak MA (1998) Virus dynamics: the effect of target cell limitation and immune responses on virus evolution. J Theor Biol 191:451–462

    Article  CAS  PubMed  Google Scholar 

  • Regoes RR, Yates A, Antia R (2007) Mathematical models of cytotoxic T-lymphocyte killing. Immunol Cell Biol 85:274–279

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci USA 97:7681–7686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RM, Bonhoeffer S, Nowak MA (1998) The frequency of resistant mutant virus before antiviral therapy. AIDS 12:461–465

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RM, Qin L, Chavez LL et al (2010) Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection. J Virol 84:6096–6102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RM, Li H, Wang S et al (2012) Quantifying the diversification of hepatitis C virus (HCV) during primary infection: estimates of the in vivo mutation rate. PLoS Pathog 8:e1002881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo AG, Shpaer EG, Delwart EL et al (1999) Coalescent estimates of HIV-1 generation time in vivo. Proc Natl Acad Sci USA 96:2187–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong L, Dahari H, Ribeiro RM et al (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2:30ra32

    Google Scholar 

  • Rong L, Ribeiro RM, Perelson AS (2012) Modeling quasispecies and drug resistance in hepatitis C patients treated with a protease inhibitor. Bull Math Biol 74:1789–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbloom DI, Hill AL, Rabi SA et al (2013) Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat Med 18:1378–1385

    Article  CAS  Google Scholar 

  • Rouzine IM, Coffin JM (1999) Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Natl Acad Sci USA 96:10758–10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouzine IM, Coffin JM (2005) Evolution of human immunodeficiency virus under selection and weak recombination. Genetics 170:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saakian DB, Hu CK (2006) Exact solution of the Eigen model with general fitness functions and degradation rates. Proc Natl Acad Sci USA 103:4935–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenz RA, Quinlivan M, Elton D et al (2010) Dynamics of influenza virus infection and pathology. J Virol 84:3974–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampah ME, Shen L, Jilek BL et al (2011) Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci USA 108:7613–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlub TE, Grimm AJ, Smyth RP et al (2014) Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol 88:3837–3849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sedaghat AR, Dinoso JB, Shen L et al (2008) Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc Natl Acad Sci USA 105:4832–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo TK, Thorne JL, Hasegawa M et al (2002) Estimation of effective population size of HIV-1 within a host: a pseudomaximum-likelihood approach. Genetics 160:1283–1293

    PubMed  PubMed Central  Google Scholar 

  • Shen L, Peterson S, Sedaghat AR et al (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Rabi SA, Sedaghat AR et al. (2011) A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 3:91ra63

    Google Scholar 

  • Siliciano RF, Greene WC (2011) HIV latency. Cold Spring Harb Perspect Med 1:a007096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simek MD, Rida W, Priddy FH et al (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83:7337–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RJ (2006) Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges? Proc Biol Sci 273:617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HC (2011) APOBEC3G: a double agent in defense. Trends Biochem Sci 36:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Adler FR, McAuley JL et al (2011) Effect of 1918 PB1-F2 expression on influenza A virus infection kinetics. PLoS Comput Biol 7:e1001081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford MA, Corey L, Cao Y et al (2000) Modeling plasma virus concentration during primary HIV infection. J Theor Biol 203:285–301

    Article  CAS  PubMed  Google Scholar 

  • Stephenson KE, Barouch DH (2013) A global approach to HIV-1 vaccine development. Immunol Rev 254:295–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Summers J, Litwin S (2006) Examining the theory of error catastrophe. J Virol 80:20–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryavanshi GW, Dixit NM (2007) Emergence of recombinant forms of HIV: dynamics and scaling. PLoS Comput Biol 3:2003–2018

    Article  CAS  PubMed  Google Scholar 

  • Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavelu PU, Gupta V, Dixit NM (2014) Estimating the fraction of progeny virions that must incorporate APOBEC3G for suppression of productive HIV-1 infection. Virology 449:224–228

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Ghany MG, Liang TJ (2012) The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 23:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tripathi K, Balagam R, Vishnoi NK et al (2012) Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Comput Biol 8:e1002684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya NK, Ribeiro RM, Miller CJ et al (2010) Viral dynamics during primary simian immunodeficiency virus infection: effect of time-dependent virus infectivity. J Virol 84:4302–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay NN, Vasantika Ajmani R et al (2008) Recombination increases human immunodeficiency virus fitness, but not necessarily diversity. J Gen Virol 89:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Volberding PA, Deeks SG (2010) Antiretroviral therapy and management of HIV infection. Lancet 376:49–62

    Article  PubMed  Google Scholar 

  • Wahl LM, Nowak MA (2000) Adherence and drug resistance: predictions for therapy outcome. Proc Biol Sci 267:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Ghosh SK, Taylor ME et al (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. Faseb J 11:835–841

    CAS  PubMed  Google Scholar 

  • Wilke CO (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Huang Y, Acosta EP et al (2005) Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency, pharmacokinetics, adherence, and drug resistance. J Acquir Immune Defic Syndr 39:272–283

    Article  CAS  PubMed  Google Scholar 

  • Yates A, Graw F, Barber DL et al (2007) Revisiting estimates of CTL killing rates in vivo. PLoS ONE 2:e1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Lipton HL, Perelson AS et al (2013) Modeling the acute and chronic phases of Theiler murine encephalomyelitis virus infection. J Virol 87:4052–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra M. Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Padmanabhan, P., Dixit, N.M. (2015). Models of Viral Population Dynamics. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_458

Download citation

Publish with us

Policies and ethics