Skip to main content

Theoretical Models of Generalized Quasispecies

  • Chapter
  • First Online:
Quasispecies: From Theory to Experimental Systems

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more.

In memory of Prof. Emmanuel David Tannenbaum (1978–2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brumer Y, Shakhnovich EI (2004a) Host-parasite coevolution and optimal mutation rates for semiconservative quasispecies. Phys Rev E 69:061909

    Article  Google Scholar 

  • Brumer Y, Shakhnovich EI (2004b) Importance of DNA repair in tumor suppression. Phys Rev E 70:061912

    Article  Google Scholar 

  • Brumer Y, Shakhnovich EI (2005) Selective advantage for conservative viruses. Phys Rev E 71:031903

    Article  Google Scholar 

  • Brumer Y, Michor F, Shakhnovich EI (2006) Genetic instability and the quasispecies model. J Theor Biol 241:216–222

    Article  CAS  PubMed  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IA, Nowak MA (2012) From prelife to life: how chemical kinetics become evolutionary dynamics. Acc Chem Res 45:2088–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadon Z, Wagner N, Ashkenasy G (2008) The road to non-enzymatic molecular networks. Angew Chem Int Ed 47:6128–6136

    Article  CAS  Google Scholar 

  • Gandhi N, Ashkenasy G, Tannenbaum E (2007) Associative learning in biochemical networks. J Theor Biol 249:58–66

    Article  CAS  PubMed  Google Scholar 

  • Gorodetsky P, Tannenbaum E (2008) Effect of mutators on adaptability in time-varying fitness landscapes. Phys Rev E 77:042901

    Article  Google Scholar 

  • Itan E, Tannenbaum E (2010) Semiconservative quasispecies equations for polysomic genomes: the general case. Phys Rev E 81:061915

    Article  Google Scholar 

  • Itan E, Tannenbaum E (2012) Effect of chromosomal instability on the mutation-selection balance in unicellular populations. PLoS ONE 7:e26513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kama A, Tannenbaum E (2010) Effect of the SOS response on the mean fitness of unicellular populations: a quasispecies approach. PLoS ONE 5:e14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler D, Levine H (1998) Mutator dynamics on a smooth evolutionary landscape. Phys Rev Lett 80:2012–2015

    Article  CAS  Google Scholar 

  • Kleiman M, Tannenbaum E (2009) Diploidy and the selective advantage for sexual reproduction in unicellular organisms. Theor Biosci 128:249–285

    Article  Google Scholar 

  • Knöppel A, Lind PA, Lustig U, Näsvall J, Andersson DI (2014) Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol 31:1220–1227

    Article  PubMed  Google Scholar 

  • Lee B, Tannenbaum E (2007) Asexual and sexual replication in sporulating organisms. Phys Rev E 76:021909

    Article  Google Scholar 

  • Nilsson M, Snoad N (2000) Error thresholds for quasispecies on dynamic fitness landscapes. Phys Rev Lett 84:191–194

    Article  CAS  PubMed  Google Scholar 

  • Obermayer B, Frey E (2009) Escalation of error catastrophe for enzymatic self-replicators. Europhys Lett 88:48006

    Article  Google Scholar 

  • Obermayer B, Frey E (2010) Error thresholds for self- and cross-specific enzymatic replication. J Theor Biol 267:653–662

    Article  CAS  PubMed  Google Scholar 

  • Palmer ME, Lipsitch M (2006) The influence of hitchhiking and deleterious mutation upon asexual mutation rates. Genetics 173:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raz Y, Tannenbaum E (2010) The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics 185:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raz Y, Tannenbaum E (2014) Repression/Depression of conjugative plasmids and their influence on the mutation-selection balance in static environments. PLoS ONE 9:e96839

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler PF, Schnabl W, Forst CV, Schuster P (1995) Dynamics of small autocatalytic reaction networks—II. Replication, mutation and catalysis. Bull Math Biol 57:21–61

    Article  CAS  Google Scholar 

  • Stadler B, Stadler PF, Schuster P (2000) Dynamics of autocatalytic replicator networks based on higher-order ligation reactions. Bull Math Biol 62:1061–1086

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum E (2006a) Selective advantage for multicellular replicative strategies: a two-cell example. Phys Rev E 73:010904

    Article  Google Scholar 

  • Tannenbaum E (2006b) An RNA-centered view of eukaryotic cells. Biosystems 84:217–224

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum E (2006c) Selective advantage for sexual reproduction. Phys Rev E 73:061925

    Article  Google Scholar 

  • Tannenbaum E (2007a) Extracting viability landscapes from mutagen-response experiments. J Theor Biol 245:37–43

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum E (2007b) When does division of labor lead to increased system output? J Theor Biol 247:413–425

    Article  PubMed  Google Scholar 

  • Tannenbaum E (2008a) Comparison of three replication strategies in complex multicellular organisms: asexual replication, sexual replication with identical gametes, and sexual replication with distinct sperm and egg gametes. Phys Rev E 77:011915

    Article  Google Scholar 

  • Tannenbaum E (2008b) Temporal differentiation and the optimization of system output. Phys Rev E 77:011922

    Article  Google Scholar 

  • Tannenbaum E (2008c) A comparison of sexual and asexual replication strategies in a simplified model based on the yeast life cycle. Theor Biosci 127:323–333

    Article  Google Scholar 

  • Tannenbaum E (2009a) Speculations on the emergence of self-awareness in big-brained organisms: the roles of associative memory and learning, existential and religious questions, and the emergence of tautologies. Conscious Cogn 18:414–4427

    Article  PubMed  Google Scholar 

  • Tannenbaum E (2009b) Selective advantage for sexual reproduction with random haploid fusion. Theor Biosci 128:85–96

    Article  Google Scholar 

  • Tannenbaum E, Fontanari JF (2008) A quasispecies approach to the evolution of sexual replication in unicellular organisms. Theor Biosci 127:53–65

    Article  Google Scholar 

  • Tannenbaum E, Shakhnovich EI (2004a) Error and repair catastrophes: a two-dimensional phase diagram in the quasispecies model. Phys Rev E 69:011902

    Article  Google Scholar 

  • Tannenbaum E, Shakhnovich EI (2004b) Solution of the quasispecies model for an arbitrary gene network. Phys Rev E 70:021903

    Article  Google Scholar 

  • Tannenbaum E, Shakhnovich EI (2005) Semiconservative replication, genetic repair, and many-gened genomes: extending the quasispecies paradigm to living systems. Phys Life Rev 2:290–317

    Article  Google Scholar 

  • Tannenbaum E, Deeds EJ, Shakhnovich EI (2003) Equilibrium distribution of mutators in the single fitness peak model. Phys Rev Lett 91:138105

    Article  PubMed  Google Scholar 

  • Tannenbaum E, Deeds EJ, Shakhnovich EI (2004a) Semiconservative replication in the quasispecies model. Phys Rev E 69:061916

    Article  Google Scholar 

  • Tannenbaum E, Sherley JL, Shakhnovich EI (2004b) Imperfect DNA lesion repair in the semiconservative quasispecies model: derivation of the Hamming class equations and solution of the single-fitness-peak landscape. Phys Rev E 70:061915

    Article  Google Scholar 

  • Tannenbaum E, Sherley JL, Shakhnovich EI (2005) Evolutionary dynamics of adult stem cells: comparison of random and immortal strand segregation mechanisms. Phys Rev E 71:041914

    Article  Google Scholar 

  • Tannenbaum E, Sherley JL, Shakhnovich EI (2006) Semiconservative quasispecies equations for polysomic genomes: the haploid case. J Theor Biol 241:791–805

    Article  CAS  PubMed  Google Scholar 

  • von Kiedrowski G (1993) Minimal replicator theory. I. Parabolic versus exponential growth. Bioorg Chem Front 3:113–146

    Article  Google Scholar 

  • Wagner N, Ashkenasy G (2009) Symmetry and order in systems chemistry. J Chem Phys 130:164907

    Article  PubMed  Google Scholar 

  • Wagner N, Pross A, Tannenbaum E (2010a) Selection advantage of metabolic over non-metabolic replicators: a kinetic analysis. Biosystems 99:126–129

    Article  CAS  PubMed  Google Scholar 

  • Wagner N, Tannenbaum E, Ashkenasy G (2010b) Second order catalytic quasispecies yields discontinuous mean fitness at error threshold. Phys Rev Lett 104:188101

    Article  PubMed  Google Scholar 

  • Wilke O (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonen Ashkenasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wagner, N., Atsmon-Raz, Y., Ashkenasy, G. (2015). Theoretical Models of Generalized Quasispecies. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_456

Download citation

Publish with us

Policies and ethics