Advertisement

Long Non-coding RNA ANRIL and Polycomb in Human Cancers and Cardiovascular Disease

  • Francesca Aguilo
  • Serena Di Cecilia
  • Martin J. WalshEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 394)

Abstract

The long non-coding RNA CDKN2B-AS1, commonly referred to as the A ntisense N on-coding R NA in the I NK4 L ocus (ANRIL), is a 3.8-kb-long RNA transcribed from the short arm of human chromosome 9 on p21.3 that overlaps a critical region encompassing three major tumor suppressor loci juxtaposed to the INK4b-ARF-INK4a gene cluster and the methyl-thioadenosine phosphorylase (MTAP) gene. Genome-wide association studies have identified this region with a remarkable and growing number of disease-associated DNA alterations and single nucleotide polymorphisms, which corresponds to increased susceptibility to human disease. Recent attention has been devoted on whether these alterations in the ANRIL sequence affect its expression levels and/or its splicing transcript variation, and in consequence, global cellular homeostasis. Moreover, recent evidence postulates that ANRIL not only can regulate their immediate genomic neighbors in cis, but also has the capacity to regulate additional loci in trans. This action would further increase the complexity for mechanisms imposed through ANRIL and furthering the scope of this lncRNA in disease pathogenesis. In this chapter, we summarize the most recent findings on the investigation of ANRIL and provide a perspective on the biological and clinical significance of ANRIL as a putative biomarker, specifically, its potential role in directing cellular fates leading to cancer and cardiovascular disease.

Keywords

Esophageal Squamous Cell Carcinoma Gastric Cancer Tissue Esophageal Squamous Cell Carcinoma Tissue p16INK4a Expression Embryonic Ectoderm Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

F.A. was supported by the Catalan Agency for Administration of University and Research (AGAUR) under a Beatriu de Pinos postdoctoral fellowship. S.D.C was supported by the European School of Molecular Medicine (SEMM) and CEINGE-Biotecnologie Avazate s.c.a.r.l, Napoli, under a PhD student fellowship. M.J.W. was supported by a Senior Scholar Award in Aging (AG-SS-2482-10) from the Ellison Medical Foundation and Public Health Service Awards HL103967, HL067099, and CA154903 from the NIH.

References

  1. de los Campos G, Gianola D, Allison DB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 11(12):880–886Google Scholar
  2. Gschwendtner A et al (2009) Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol 65(5):531–539CrossRefPubMedPubMedCentralGoogle Scholar
  3. Matarin M et al (2008) Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke 39(5):1586–1589CrossRefPubMedPubMedCentralGoogle Scholar
  4. Helgadottir A et al (2008) The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 40(2):217–224CrossRefPubMedGoogle Scholar
  5. Zeggini E et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341CrossRefPubMedPubMedCentralGoogle Scholar
  6. Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345CrossRefPubMedPubMedCentralGoogle Scholar
  7. Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904CrossRefPubMedPubMedCentralGoogle Scholar
  8. Wrensch M et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cunnington MS et al (2010) Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet 6(4):e1000899CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bishop DT et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7(9):667–677CrossRefPubMedGoogle Scholar
  12. Popov N, Gil J (2010) Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics 5(8):685–690CrossRefPubMedPubMedCentralGoogle Scholar
  13. Nobori T et al (1996) Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc Natl Acad Sci U S A 93(12):6203–6208CrossRefPubMedPubMedCentralGoogle Scholar
  14. Behrmann I et al (2003) Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma. Am J Pathol 163(2):683–690CrossRefPubMedPubMedCentralGoogle Scholar
  15. Schmid M et al (1998) Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC). Oncogene 17(20):2669–2675CrossRefPubMedGoogle Scholar
  16. Pasmant E et al (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969CrossRefPubMedGoogle Scholar
  17. Yu W et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sato K et al (2010) ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep 24(3):701–707PubMedGoogle Scholar
  19. Rodriguez C et al (2010) CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun 392(2):129–134CrossRefPubMedGoogle Scholar
  20. Jarinova O et al (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol 29(10):1671–1677CrossRefPubMedGoogle Scholar
  21. Burd CE et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233CrossRefPubMedPubMedCentralGoogle Scholar
  22. Schmid M et al (2000) A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer. Oncogene 19(50):5747–5754CrossRefPubMedGoogle Scholar
  23. Folkersen L et al (2009a) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS ONE 4(11):e7677CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276(5688):565–570CrossRefPubMedGoogle Scholar
  25. Levine SS et al (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22(17):6070–6078CrossRefPubMedPubMedCentralGoogle Scholar
  26. Margueron R et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shen X et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32(4):491–502CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854CrossRefPubMedGoogle Scholar
  29. Wang H et al (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010):873–878CrossRefPubMedGoogle Scholar
  30. Mak W et al (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12(12):1016–1020CrossRefPubMedGoogle Scholar
  31. Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32(3):426–431CrossRefPubMedGoogle Scholar
  33. Pandey RR et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246CrossRefPubMedGoogle Scholar
  34. Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kotake Y et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674CrossRefPubMedPubMedCentralGoogle Scholar
  37. Aguilo F, Zhou MM, Walsh MJ (2011) Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 71(16):5365–5369CrossRefPubMedPubMedCentralGoogle Scholar
  38. Holdt LM et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588CrossRefPubMedPubMedCentralGoogle Scholar
  39. Folkersen L et al (2009b) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS ONE 4(11):e7677CrossRefPubMedPubMedCentralGoogle Scholar
  40. Holdt LM et al (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30(3):620–627CrossRefPubMedGoogle Scholar
  41. Holdt LM, Teupser D (2012) Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol 32(2):196–206CrossRefPubMedGoogle Scholar
  42. Liu Y et al (2009) INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS ONE 4(4):e5027CrossRefPubMedPubMedCentralGoogle Scholar
  43. Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227CrossRefPubMedPubMedCentralGoogle Scholar
  44. Congrains A et al (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220(2):449–455CrossRefPubMedGoogle Scholar
  45. Bochenek G et al (2013) The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet 22(22):4516–4527CrossRefPubMedGoogle Scholar
  46. Harismendy O et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470(7333):264–268CrossRefPubMedPubMedCentralGoogle Scholar
  47. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296(5573):1653–1655CrossRefPubMedGoogle Scholar
  48. Helgadottir A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493CrossRefPubMedGoogle Scholar
  49. Malumbres M, Ortega S, Barbacid M (2000) Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors. Biol Chem 381(9–10):827–838PubMedGoogle Scholar
  50. Minamino T et al (2003) Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 108(18):2264–2269CrossRefPubMedGoogle Scholar
  51. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  53. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48CrossRefPubMedGoogle Scholar
  54. Burns KH, Boeke JD (2012) Human transposon tectonics. Cell 149(4):740–752CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159CrossRefPubMedGoogle Scholar
  56. Iacobucci I et al (2011) A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res 35(8):1052–1059CrossRefPubMedGoogle Scholar
  57. Stacey SN et al (2009) New common variants affecting susceptibility to basal cell carcinoma. Nat Genet 41(8):909–914CrossRefPubMedPubMedCentralGoogle Scholar
  58. Turnbull C et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42(6):504–507CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pasmant E et al (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25(2):444–448CrossRefPubMedGoogle Scholar
  60. Zhang EB et al (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5(8):2276–2292CrossRefPubMedPubMedCentralGoogle Scholar
  61. Chen D et al (2014) ANRIL inhibits p15(INK4b) through the TGFbeta1 signaling pathway in human esophageal squamous cell carcinoma. Cell Immunol 289(1–2):91–96PubMedGoogle Scholar
  62. Wan G et al (2013) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25(5):1086–1095CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francesca Aguilo
    • 1
  • Serena Di Cecilia
    • 1
    • 2
  • Martin J. Walsh
    • 1
    Email author
  1. 1.Departments of Structural and Chemical Biology, Genetics and Genomic Sciences and PediatricsIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.European School of Molecular MedicineCEINGE—Biotecnologie AvanzateNaplesItaly

Personalised recommendations