Skip to main content

What Is a Quasispecies? Historical Origins and Current Scope

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

The quasispecies concept is introduced by means of a simple theoretical model that uses as little chemical kinetics and mathematics as possible but fully in the spirit of Albert Einstein who said: “Things should be made as simple as possible but not simpler.” More elaborate treatments follow in the forthcoming chapters. It is shown that the most important results of the theory, in particular the existence of error thresholds, are not dependent on simplifying assumptions concerning the distribution of fitness values. Error thresholds are regularly found on landscapes with large and irregular scatter of fitness. After the introduction to theory, it will be shown how experimental data on the evolution of molecules or viruses may be fit to the theoretical model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alves D, Fontanari JF (1998) Error threshold in finite populations. Phys Rev E 57:7008–7013

    Article  CAS  Google Scholar 

  • Arias A, Lazaro E, Escarmis C, Domingo E (2001) Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5(5):e1000421

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateman DA, Wickner RB (2013) The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet 9(1):e1003257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1:27–32

    Article  CAS  PubMed  Google Scholar 

  • Bernacki JP, Murphy RM (2009) Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 96(7):2871–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biebricher CK (1983) Darwinian selection of self-replicating RNA molecules. Evol Biol 16:1–52

    Article  Google Scholar 

  • Biebricher CK, Eigen M, Gardiner WC Jr (1983) Kinetics of RNA replication. Biochemistry 22:2544–2559

    Article  CAS  PubMed  Google Scholar 

  • Billeter M (1978) Sequence and location of large RNase T1 oligonucleotides in bacteriophage Qβ RNA. J Biol Chem 253:8381–8389

    CAS  PubMed  Google Scholar 

  • Carr J (1981) Applications of centre manifold theory. Springer, Berlin

    Book  Google Scholar 

  • Castilla J, Morales R, Saa P, Barria M, Gambetti P, Soto C (2008) Cell-free propagation of prion strins. EMBO J 27(19):2557–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro C, Arnold JJ, Cameron CE (2005) Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res 107:141–149

    Article  CAS  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York (Reprinted at The Blackburn Press, Caldwell, NJ, 2009)

    Google Scholar 

  • Derrida B, Peliti L (1991) Evolution in a flat fitness landscape. Bull Math Biol 53:355–382

    Article  Google Scholar 

  • Domingo E, Flavell RA, Weissmann C (1976) In vitro site-directed mutagenesis: generation and properties of an infectious extracistronic mutant of bacteriophage Qβ. Gene 1:3–25

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Davila M, Ortin J (1980) Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene 11:333–346

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortín J, López-Galindez C, Pérez-Breña P, Villanueva N, Nájera R, VandePol S, Steinhauer D, DePolo N, Holland JJ (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance–a review. Gene 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Domingo E, Holland JJ, Ahlquist P (1988) RNA genetics. CRC Press, Boca Raton

    Google Scholar 

  • Domingo E, Holland JJ, Biebricher C, Eigen M (1995) Quasispecies: the concept and the word. In: Gibbs A, Calisher C, García-Arenal F (eds) Molecular evolution of the viruses. Cambridge University Press, Cambridge, pp 171–180

    Google Scholar 

  • Domingo E, Biebricher C, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, Austin

    Google Scholar 

  • Domingo E, Ruiz-Jarabo CM, Arias A, Garcia-Arriaza JF, Escarmís C (2004) Quasispecies dynamics and evolution of foot-and-mouth disease virus. In: Sobrino F, Domingo E (eds) Foot-and-mouth disease. Horizon Bioscience, Wymondham

    Google Scholar 

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 90:4171–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (2000) Natural selection: a phase transition? Biophys Chem 85:101–123

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle—a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64:541–565

    Google Scholar 

  • Eigen M, Schuster P (1978a) The hypercycle—a principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften 65:7–41

    Google Scholar 

  • Eigen M, Schuster P (1978b) The hypercycle—a principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften 65:341–369

    Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization, Springer, Berlin

    Book  Google Scholar 

  • Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Ahlquist P, Holland JJ (eds) RNA genetics. CRC Press Inc, Boca Raton, FL., pp 211–245

    Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  • Flavell RA, Sabo DL, Bandle EF, Weissmann C (1974) Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol 89:255–272

    Article  CAS  PubMed  Google Scholar 

  • Fox EJ, Loeb LA (2010) Lethal mutagenesis: targeting the phenotype in cancer. Semin Cancer Biol 20(5):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308

    Article  CAS  PubMed  Google Scholar 

  • Gatenby RA, Frieden BR (2002) Application of information theory and extreme physical information to carcinogenesis. Cancer Res 62(13):3675–3684

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Silva AS, Gilles RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69(11):4894–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, Prusiner SB (2009) Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 5(11):e1000673

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland JJ (2006) Transitions in understanding of RNA viruses: an historical perspective. Curr Top Microbiol Immunol 299:371–401

    CAS  PubMed  Google Scholar 

  • Holland JJ, Grabau EA, Jones CL, Semler BL (1979) Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell 16:495–504

    Article  CAS  PubMed  Google Scholar 

  • Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Huynen MA, Stadler PF, Fontana W (1996) Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci USA 93:397–401

    Google Scholar 

  • Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38:15–28

    Article  Google Scholar 

  • Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S (2012) Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet 8:e1002551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahal SP, Browning S, Li J, Suponitsky-Kroyter I, Weissmann C (2010) Transfer of a prion strain to different hosts leads to emergence of strain varriants. Proc Natl Acad Sci USA 107(52):22653–22658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin A, Tejero H, Nuño JC, Montero F (2012) Characteristic time in quasispecies evolution. J Theor Biol 303:25–32

    Article  PubMed  Google Scholar 

  • Mas A, Lopez-Galíndez C, Cacho I, Gomez J, Martínez MA (2010) Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 397(4):865–877

    Article  CAS  PubMed  Google Scholar 

  • Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolson GL (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype. From oncogene to oncophetal expression. Cancer Res 47(6):1473–1487

    CAS  PubMed  Google Scholar 

  • Nowak MA (2006) Evolutionary Dynamics. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395

    Article  CAS  PubMed  Google Scholar 

  • Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  • Ochoa G (2006) Error thresholds in genetic algorithms. Evol Comput 14:157–182

    Article  PubMed  Google Scholar 

  • Oelschlegel AM, Weissmann C (2013) Acquisition of drug resistance and dependence by prions. PLoS Pathog 9:e1003158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojosnegros S, Perales C, Mas A, Domingo E (2011) Quasispecies as a matter of fact: viruses and beyond. Virus Res 162:203–215

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Munoz E, Deem MW (2010) Quasispecies theory for finite populations. Phys Rev 81:011902

    Google Scholar 

  • Saakian DB, Hu CK (2006) Exact solution of the Eigen model with general fitness functions and degradation rates. Proc Natl Acad Sci USA 103:4935–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saakian DB, Munoz E, Hu CK, Deem MW (2006) Quasispecies theory for multiple-peak fitness landscapes. Phys Rev E 73:041913

    Article  Google Scholar 

  • Saakian DB, Biebricher CK, Hu CK (2009) Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Phys Rev 79:041905

    Google Scholar 

  • Schuster P (2006) Prediction of RNA secondary structures: from theory to models and real molecules. Rep Prog Phys 69:1419–1477

    Article  CAS  Google Scholar 

  • Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster P (2010a) Genotypes and phenotypes in the evolution of molecules. In: Caetono-Anolles G (ed) Evolutionary genomics and systems biology. Wiley-Blackwell, New Jersey, pp 123–152

    Google Scholar 

  • Schuster P (2010b) Mathematical modeling of evolution. Solved and open problems. Theory Biosci 130:71–89

    Article  PubMed  Google Scholar 

  • Schuster P (2012) Evolution on ‘realistic’ fitness landscapes. Phase transitions, strong quasispecies, and neutrality. Santa Fe Institute working paper #12-06-006, Santa Fe Institute, Santa Fe

    Google Scholar 

  • Sobrino F, Dávila M, Ortín J, Domingo E (1983) Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128:310–318

    Article  CAS  PubMed  Google Scholar 

  • Solé RV, Deisboeck TS (2004) An error catastrophe in cancer? J Theor Biol 228(1):47–54

    Article  PubMed  Google Scholar 

  • Solé RV, Valverde S, Rodriguez-Caso C, Sardanyés J (2014) Can a minimal replicating construct be identified as the embodiment of cancer? BioEssays 36:503–512

    Article  PubMed  Google Scholar 

  • Spiess EB (1977) Genes in populations. Wiley, New York

    Google Scholar 

  • Steinhauer DA, Holland JJ (1986) Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 57:219–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with lethal mutants. BMC Evol Biol 7(15):author reply 15

    Google Scholar 

  • Thompson CJ, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142

    Article  Google Scholar 

  • Vanni I, Di Bari MA, Pirisinu L, D’Agostino C, Agrimi U, Nonno R (2014) In vitro replication highlights the mutability of prions. Prion 8:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ward CD, Flanegan JB (1992) Determination of the poliovirus RNA polymerase error frequency at eight sites in the viral genome. J Virol 66:3784–3793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissmann C (2012) Mutation and selection of prions. PLoS Pathog 8:e1002582

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissmann C, Tanaguchi T, Domingo E, Sabo D, Flavell RA (1977) Site-directed mutagenesis as a tool in genetics. In: Schultz J, Brada Z (eds) Genetic manipulation as it affects the cancer problem. Academic Press, New York, pp 11–36

    Google Scholar 

  • Weissmann C, Li J, Mahal SP, Browning S (2011) Prions on the move. EMBO Rep 12:1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke CO (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilke CO, Ronnewinkel C, Martinetz T (2001) Dynamic fitness landscapes in molecular evolution. Phys Rep 349:395–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Peter Schuster wishes to acknowledge support by the University of Vienna, Wien, Austria and the Santa Fe Institute, Santa Fe, USA. Esteban Domingo acknowledges the support of grants BFU 2011-23604 and SAF2014-52400-R from Ministerio de Economía y Competitividad, grant S2013/ABI-2906 (PLATESA) from Comunidad Autónoma de Madrid, CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas) which is funded by Instituto de Salud Carlos III, and Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esteban Domingo or Peter Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domingo, E., Schuster, P. (2015). What Is a Quasispecies? Historical Origins and Current Scope. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_453

Download citation

Publish with us

Policies and ethics