Skip to main content

Pseudogene-Expressed RNAs: Emerging Roles in Gene Regulation and Disease

  • Chapter
  • First Online:
Long Non-coding RNAs in Human Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 394))

Abstract

Pseudogenes have for long been considered as non-functional relics littering the human genome. Only now, it is becoming apparent that many pseudogenes are transcribed into long noncoding RNAs, some with proven biological functions. Here, we review the current knowledge of pseudogenes and their widespread functional properties with an emphasis on pseudogenes that have been functionally investigated in greater detail. Pseudogenes are emerging as a novel class of long noncoding RNAs functioning, for example, through microRNA sponging and chromatin remodeling. The examples discussed herein underline that pseudogene-encoded RNAs are important regulatory molecules involved in diseases such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ohshima K et al (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4:R74

    Google Scholar 

  • Pei BK et al (2012) The GENCODE pseudogene resource. Genome Biol 13:R51

    Google Scholar 

  • Hayashi H et al (2013) The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene 34:199–208

    Google Scholar 

  • Johnsson P et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446

    Google Scholar 

  • Alimonti A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42:454–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie JK et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S et al (2009) Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol 10:R2

    Article  PubMed  PubMed Central  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  CAS  PubMed  Google Scholar 

  • Beltran M et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockdorff N et al (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  PubMed  Google Scholar 

  • Brunetti A, Manfioletti G, Chiefari E, Goldfine ID, Foti D (2001) Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). FASEB J 15:492–500

    Article  CAS  PubMed  Google Scholar 

  • Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Chan WL, Yang WK, Huang HD, Chang JG (2013) pseudoMap: an innovative and comprehensive resource for identification of siRNA-mediated mechanisms in human transcribed pseudogenes. Database (Oxford) 2013:bat001

    Google Scholar 

  • Chen J et al (2004) Over 20 % of human transcripts might form sense-antisense pairs. Nucleic Acids Res 32:4812–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappetta G et al (1995) The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10:1307–1314

    CAS  PubMed  Google Scholar 

  • Chiappetta G et al (1996) High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13:2439–2446

    CAS  PubMed  Google Scholar 

  • Chiefari E et al (2010) Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat Commun 1:40

    Article  PubMed  Google Scholar 

  • Chieffi P et al (2002) HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene 21:3644–3650

    Article  CAS  PubMed  Google Scholar 

  • Cooke SL et al (2014) Processed pseudogenes acquired somatically during cancer development. Nat Commun 5:3644

    Article  PubMed  PubMed Central  Google Scholar 

  • Coufal NG et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahia PL et al (1998) A highly conserved processed PTEN pseudogene is located on chromosome band 9p21. Oncogene 16:2403–2406

    Article  CAS  PubMed  Google Scholar 

  • Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655

    Article  CAS  PubMed  Google Scholar 

  • Engstrom PG et al (2006) Complex Loci in human and mouse genomes. PLoS Genet 2:e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    Article  CAS  PubMed  Google Scholar 

  • Esposito F et al (2014) HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 5:8341–8354

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  • Foti D et al (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med 11:765–773

    Article  CAS  PubMed  Google Scholar 

  • Frasca F et al (2006) HMGA1 inhibits the function of p53 family members in thyroid cancer cells. Cancer Res 66:2980–2989

    Article  CAS  PubMed  Google Scholar 

  • Frith MC et al (2006) Pseudo-messenger RNA: phantoms of the transcriptome. PLoS Genet 2:e23

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899–910

    Article  CAS  PubMed  Google Scholar 

  • Giancotti V et al (1985) Changes in nuclear proteins on transformation of rat epithelial thyroid cells by a murine sarcoma retrovirus. Cancer Res 45:6051–6057

    CAS  PubMed  Google Scholar 

  • Gong CG, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Google Scholar 

  • Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  CAS  PubMed  Google Scholar 

  • Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacisuleyman E et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189:227–234

    Article  CAS  PubMed  Google Scholar 

  • Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1:165–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Iskow RC et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacq C, Miller JR, Brownlee GG (1977) A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12:109–120

    Article  CAS  PubMed  Google Scholar 

  • Johnsson P, Morris KV, Grander D (2014) Pseudogenes: a novel source of trans-acting antisense RNAs. Methods Mol Biol 1167:213–226

    Article  CAS  PubMed  Google Scholar 

  • Kalyana-Sundaram S et al (2012) Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 149:1622–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastler S et al (2010) POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate 70:666–674

    CAS  PubMed  Google Scholar 

  • Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Khoo C, Blanchard RK, Sullivan VK, Cousins RJ (1997) Human cysteine-rich intestinal protein: cDNA cloning and expression of recombinant protein and identification in human peripheral blood mononuclear cells. Protein Expr Purif 9:379–387

    Article  CAS  PubMed  Google Scholar 

  • Kim TK et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korneev SA, Park JH, O’Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19:7711–7720

    CAS  PubMed  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Latos PA et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    Article  CAS  PubMed  Google Scholar 

  • Lee E et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337:967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy S et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  PubMed Central  Google Scholar 

  • Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kogler G (2007) Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1:364–366

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ et al (2009) Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genom 10:480

    Article  Google Scholar 

  • Mahmoudi S et al (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33:462–471

    Article  CAS  PubMed  Google Scholar 

  • Margulies EH et al (2005) Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc Natl Acad Sci USA 102:3354–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestdagh P et al (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29:3583–3592

    Article  CAS  PubMed  Google Scholar 

  • Moran JV et al (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri AR et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muro EM, Andrade-Navarro MA (2010) Pseudogenes as an alternative source of natural antisense transcripts. Bmc Evol Biol 10:338

    Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Pain D, Chirn GW, Strassel C, Kemp DM (2005) Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem 280:6265–6268

    Article  CAS  PubMed  Google Scholar 

  • Pegoraro S et al (2013) HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget 4:1293–1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  CAS  PubMed  Google Scholar 

  • Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  CAS  PubMed  Google Scholar 

  • Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A (2008) LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res 36:5704–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierantoni GM et al (2001) High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene 20:6132–6141

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni GM et al (2003) High-mobility group A1 proteins are overexpressed in human leukaemias. Biochem J 372:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierantoni GM et al (2007) High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 117:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliseno L et al (2011) Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol 131:2497–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puget N et al (2002) Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 70:858–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapicavoli NA et al (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeves R, Nissen MS (1990) The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 265:8573–8582

    CAS  PubMed  Google Scholar 

  • Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sado T, Wang Z, Sasaki H, Li E (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:1275–1286

    CAS  PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  • Solyom S et al (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22:2328–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoger R et al (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71

    Article  CAS  PubMed  Google Scholar 

  • Suo G et al (2005) Oct4 pseudogenes are transcribed in cancers. Biochem Biophys Res Commun 337:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Tai MH et al (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26:495–502

    Article  CAS  PubMed  Google Scholar 

  • Takeda J, Seino S, Bell GI (1992) Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 20:4613–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam OH et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SI et al (1992) Mutations in the insulin receptor gene. Endocr Rev 13:566–595

    Article  CAS  PubMed  Google Scholar 

  • Taylor SI, Accili D, Imai Y (1994) Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43:735–740

    Article  CAS  PubMed  Google Scholar 

  • Tessari MA et al (2003) Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol 23:9104–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanos D, Maniatis T (1992) The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71:777–789

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  CAS  PubMed  Google Scholar 

  • Weil D, Power MA, Webb GC, Li CL (1997) Antisense transcription of a murine FGFR-3 psuedogene during fetal developement. Gene 187:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wutz A et al (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  CAS  PubMed  Google Scholar 

  • Yu W et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakut-Houri R et al (1983) A single gene and a pseudogene for the cellular tumour antigen p53. Nature 306:594–597

    Article  CAS  PubMed  Google Scholar 

  • Zangrossi S et al (2007) Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20:62–67

    Article  PubMed  Google Scholar 

  • Zhao S et al (2011) Expression of OCT4 pseudogenes in human tumours: lessons from glioma and breast carcinoma. J Pathol 223:672–682

    Article  CAS  PubMed  Google Scholar 

  • Zhou BS, Beidler DR, Cheng YC (1992) Identification of antisense RNA transcripts from a human DNA topoisomerase I pseudogene. Cancer Res 52:4280–4285

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the Swedish Childhood Cancer Foundation, The Swedish Cancer Society, Radiumhemmets Forskningsfonder, Vetenskapsrådet to Dan Grandér.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Johnsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grandér, D., Johnsson, P. (2015). Pseudogene-Expressed RNAs: Emerging Roles in Gene Regulation and Disease. In: Morris, K. (eds) Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, vol 394. Springer, Cham. https://doi.org/10.1007/82_2015_442

Download citation

Publish with us

Policies and ethics