Skip to main content

Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 405))

Abstract

The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albanell J, Gascon P (2005) Small molecules with EGFR-TK inhibitor activity. Curr Drug Targets 6(3):259–274

    Article  CAS  PubMed  Google Scholar 

  • Alexander AN, Huelsmeyer MK, Mitzey A, Dubielzig RR, Kurzman ID, Macewen EG, Vail DM (2006) Development of an allogeneic whole-cell tumor vaccine expressing xenogeneic gp100 and its implementation in a phase II clinical trial in canine patients with malignant melanoma. Cancer Immunol Immunother 55(4):433–442. doi:10.1007/s00262-005-0025-6

    Article  CAS  PubMed  Google Scholar 

  • Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P, Wei WZ, Cavallo F (2006) Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 66(15):7734–7740. doi:10.1158/0008-5472.CAN-06-1432 66/15/7734 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, Arribas J (2006) Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J 25(13):3234–3244. doi:10.1038/sj.emboj.7601191 7601191 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurisicchio L, Mancini R, Ciliberto G (2013) Cancer vaccination by electro-gene-transfer. Expert Rev Vaccines 12(10):1127–1137. doi:10.1586/14760584.2013.836903

    Article  CAS  PubMed  Google Scholar 

  • Aurisicchio L, Fridman A, Bagchi A, Scarselli E, La Monica N, Ciliberto G (2014) A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology 3(1):e27529. doi:10.4161/onci.27529 2013ONCOIMM0318R [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119. doi:10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  • Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC (2004) Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 113(11):1515–1525. doi:10.1172/JCI21926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggio K, Nicoletti G, Di Carlo E, Cavallo F, Landuzzi L, Melani C, Giovarelli M, Rossi I, Nanni P, De Giovanni C, Bouchard P, Wolf S, Modesti A, Musiani P, Lollini PL, Colombo MP, Forni G (1998) Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med 188(3):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casares N, Arribillaga L, Sarobe P, Dotor J, de Cerio ALD, Melero I, Prieto J, Borras-Cuesta F, Lasarte JJ (2003) CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol 171(11):5931–5939

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni F, Tagliabue E, Campiglio M, Pupa SM, Balsari A, Menard S (2006) Role of exon-16-deleted HER2 in breast carcinomas. Endocr Relat Cancer 13(1):221–232. doi:10.1677/erc.1.01047 13/1/221 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ (2006) Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 90:175–213. doi:10.1016/S0065-2776(06)90005-4 S0065-2776(06)90005-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cavallo F, Aurisicchio L, Mancini R, Ciliberto G (2014) Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 1–16. doi:10.1517/14712598.2014.927433

  • Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526. doi:10.1158/1078-0432.CCR-10-3126 1078-0432.CCR-10-3126 [pii]

    Article  PubMed  Google Scholar 

  • Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, Creak A, Dobbyn J, Johnson B, Bass P, Heath C, Kerr P, Mathiesen I, Dearnaley D, Stevenson F, Ottensmeier C (2012) DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 61(11):2161–2170. doi:10.1007/s00262-012-1270-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes J, Roche H (2012) Docetaxel combined with targeted therapies in metastatic breast cancer. Cancer Treat Rev 38(5):387–396. doi:10.1016/j.ctrv.2011.08.001 S0305-7372(11)00176-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, Fridman A, Fabregas JC, Marshall J, Scarselli E, La Monica N, Ciliberto G, Montero AJ (2013) Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 11:62. doi:10.1186/1479-5876-11-62 1479-5876-11-62 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

  • Dyall R, Bowne WB, Weber LW, LeMaoult J, Szabo P, Moroi Y, Piskun G, Lewis JJ, Houghton AN, Nikolic-Zugic J (1998) Heteroclitic immunization induces tumor immunity. J Exp Med 188(9):1553–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J (2013) DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 31(37):3843–3848. doi:10.1016/j.vaccine.2013.06.063 S0264-410X(13)00855-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Eschenburg G, Stermann A, Preissner R, Meyer HA, Lode HN (2010) DNA vaccination: using the patient’s immune system to overcome cancer. Clin Dev Immunol 2010:169484. doi:10.1155/2010/169484

    Article  PubMed  PubMed Central  Google Scholar 

  • Even-Desrumeaux K, Baty D, Chames P (2011) State of the art in tumor antigen and biomarker discovery. Cancers (Basel) 3(2):2554–2596. doi:10.3390/cancers3022554 cancers3022554 [pii]

    Article  Google Scholar 

  • Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E, Wong WL, Hollingshead P, Schwall R, Koeppen H, Erickson S (2004) HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin Cancer Res 10(7):2499–2511

    Article  CAS  PubMed  Google Scholar 

  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378. doi:10.1155/2010/174378

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167(12):7150–7156

    Article  CAS  PubMed  Google Scholar 

  • Frelin L, Brass A, Ahlen G, Brenndorfer ED, Chen M, Sallberg M (2010) Electroporation: a promising method for the nonviral delivery of DNA vaccines in humans? Drug News Perspect 23(10):647–653. doi:10.1358/dnp.2010.23.10.1513492 1513492 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S, Bacus SS, Sela M, Yarden Y (2005) Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 102(6):1915–1920. doi:10.1073/pnas.0409610102 0409610102 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski TF (2010) Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell Melanoma Res 23(5):580–581. doi:10.1111/j.1755-148X.2010.00737.xPCR737 PCR737 [pii]

    Article  PubMed  Google Scholar 

  • Ginsberg BA, Gallardo HF, Rasalan TS, Adamow M, Mu Z, Tandon S, Bewkes BB, Roman RA, Chapman PB, Schwartz GK, Carvajal RD, Panageas KS, Terzulli SL, Houghton AN, Yuan JD, Wolchok JD (2010) Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res 16(15):4057–4065. doi:10.1158/1078-0432.CCR-10-1093 1078-0432.CCR-10-1093 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenting J, Wessels S (2005) Ensuring safety of DNA vaccines. Microb Cell Fact 4:26. doi:10.1186/1475-2859-4-26 1475-2859-4-26 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandler AD (2009) Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother 58(4):517–530. doi:10.1007/s00262-008-0574-6

    Article  CAS  PubMed  Google Scholar 

  • Grosenbaugh DA, Leard AT, Bergman PJ, Klein MK, Meleo K, Susaneck S, Hess PR, Jankowski MK, Jones PD, Leibman NF, Johnson MH, Kurzman ID, Wolchok JD (2011) Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res 72(12):1631–1638. doi:10.2460/ajvr.72.12.1631

    Article  CAS  PubMed  Google Scholar 

  • Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26. doi:10.1111/j.0105-2896.2004.00142.x IMR142 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466 NEJMoa1003466 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iezzi M, Quaglino E, Cappello P, Toto V, Sabatini F, Curcio C, Garotta G, Musiani P, Cavallo F (2011) HCG hastens both the development of mammary carcinoma and the metastatization of HCG/LH and ERBB-2 receptor-positive cells in mice. Int J Immunopathol Pharmacol 24(3):621–630 8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F (2012) DNA vaccination against oncoantigens: A promise. Oncoimmunology 1(3):316–325. doi:10.4161/onci.19127 2011ONCOIMM0110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob J, Radkevich O, Forni G, Zielinski J, Shim D, Jones RF, Wei WZ (2006) Activity of DNA vaccines encoding self or heterologous Her-2/neu in Her-2 or neu transgenic mice. Cell Immunol 240(2):96–106. doi:10.1016/j.cellimm.2006.07.002 S0008-8749(06)00119-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jacob JB, Quaglino E, Radkevich-Brown O, Jones RF, Piechocki MP, Reyes JD, Weise A, Amici A, Wei WZ (2010) Combining human and rat sequences in her-2 DNA vaccines blunts immune tolerance and drives antitumor immunity. Cancer Res 70(1):119–128. doi:10.1158/0008-5472.CAN-09-2554 0008-5472.CAN-09-2554 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421(6925):852–856. doi:10.1038/nature01441 nature01441 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jensen PE, Kapp JA (1986) Bystander help in primary immune responses in vivo. J Exp Med 164(3):841–854

    Article  CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623

    Article  CAS  PubMed  Google Scholar 

  • Kamstock D, Elmslie R, Thamm D, Dow S (2007) Evaluation of a xenogeneic VEGF vaccine in dogs with soft tissue sarcoma. Cancer Immunol Immunother 56(8):1299–1309. doi:10.1007/s00262-007-0282-7

    Article  CAS  PubMed  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  • Kayaga J, Souberbielle BE, Sheikh N, Morrow WJ, Scott-Taylor T, Vile R, Chong H, Dalgleish AG (1999) Anti-tumour activity against B16-F10 melanoma with a GM-CSF secreting allogeneic tumour cell vaccine. Gene Ther 6(8):1475–1481. doi:10.1038/sj.gt.3300961

    Article  CAS  PubMed  Google Scholar 

  • Kianizad K, Marshall LA, Grinshtein N, Bernard D, Margl R, Cheng S, Beermann F, Wan Y, Bramson J (2007) Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T-cell helper epitope. Cancer Res 67(13):6459–6467. doi:10.1158/0008-5472.CAN-06-4336 67/13/6459 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66(11):5527–5536. doi:10.1158/0008-5472.CAN-05-4128 66/11/5527 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kircheis R, Kupcu Z, Wallner G, Rossler V, Schweighoffer T, Wagner E (2000) Interleukin-2 gene-modified allogeneic melanoma cell vaccines can induce cross-protection against syngeneic tumors in mice. Cancer Gene Ther 7(6):870–878. doi:10.1038/sj.cgt.7700183

    Article  CAS  PubMed  Google Scholar 

  • Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158(8):3635–3639

    CAS  PubMed  Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788. doi:10.1038/nrg2432 nrg2432 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaCelle MG, Jensen SM, Fox BA (2009) Partial CD4 depletion reduces regulatory T cells induced by multiple vaccinations and restores therapeutic efficacy. Clin Cancer Res 15(22):6881–6890. doi:10.1158/1078-0432.CCR-09-1113 1078-0432.CCR-09-1113 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Kjeken R, Mathiesen I, Barouch DH (2008) Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 82(11):5643–5649. doi:10.1128/JVI.02564-07JVI.02564-07 JVI.02564-07 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761

    Article  CAS  PubMed  Google Scholar 

  • Lollini PL, Cavallo F, Nanni P, Forni G (2006) Vaccines for tumour prevention. Nat Rev Cancer 6(3):204–216. doi:10.1038/nrc1815 nrc1815 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20(11):1269–1278. doi:10.1089/hum.2009.067

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Portugall I, Hamilton-Williams EE, Gotot J, Kurts C (2009) CD25+ T(reg) specifically suppress auto-Ab generation against pancreatic tissue autoantigens. Eur J Immunol 39(1):225–233. doi:10.1002/eji.200838699

    Article  CAS  PubMed  Google Scholar 

  • Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, Dahut WL, Schlom J, Gulley JL (2012) Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):501–508. doi:10.1016/S1470-2045(12)70006-2 S1470-2045(12)70006-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P, Tsang KY, Schlom J (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23):3964–3973

    Article  CAS  PubMed  Google Scholar 

  • Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145. doi:10.1182/blood-2003-01-0190-01-0190 2003-01-0190 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360. doi:10.1038/nrc2373 nrc2373 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mocellin S, Pilati P, Nitti D (2009) Peptide-based anticancer vaccines: recent advances and future perspectives. Curr Med Chem 16(36):4779–4796. doi:10.2174/092986709789909648 CMC-AbsEpub-086 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 8:53. doi:10.1186/1479-5876-8-53 1479-5876-8-53 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Occhipinti S, Sponton L, Rolla S, Caorsi C, Novarino A, Donadio M, Bustreo S, Satolli MA, Pecchioni C, Marchini C, Amici A, Cavallo F, Cappello P, Pierobon D, Novelli F, Giovarelli M (2014) Chimeric Rat/Human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clin Cancer Res 20(11):2910–2921. doi:10.1158/1078-0432.CCR-13-2663 1078-0432.CCR-13-2663 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Odunsi K, Matsuzaki J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, Beck A, Morrison CD, Ritter G, Godoy H, Lele S, duPont N, Edwards R, Shrikant P, Old LJ, Gnjatic S, Jager E (2012) Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci USA 109(15):5797–5802. doi:10.1073/pnas.1117208109 1117208109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottnod JM, Smedley RC, Walshaw R, Hauptman JG, Kiupel M, Obradovich JE (2013) A retrospective analysis of the efficacy of Oncept vaccine for the adjunct treatment of canine oral malignant melanoma. Vet Comp Oncol 11(3):219–229. doi:10.1111/vco.12057

    Article  CAS  PubMed  Google Scholar 

  • Pentcheva-Hoang T, Corse E, Allison JP (2009) Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev 229(1):67–87. doi:10.1111/j.1600-065X.2009.00763.x IMR763 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Piechocki MP, Ho YS, Pilon S, Wei WZ (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171(11):5787–5794

    Article  CAS  PubMed  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi:10.1038/nrc1256 nrc1256 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Quaglino E, Mastini C, Forni G, Cavallo F (2008) ErbB2 transgenic mice: a tool for investigation of the immune prevention and treatment of mammary carcinomas. Curr Protoc Immunol Chapter 20:Unit 20 29 21–20 29–10. doi:10.1002/0471142735.im2009s82

  • Quaglino E, Mastini C, Amici A, Marchini C, Iezzi M, Lanzardo S, De Giovanni C, Montani M, Lollini PL, Masucci G, Forni G, Cavallo F (2010) A better immune reaction to Erbb-2 tumors is elicited in mice by DNA vaccines encoding rat/human chimeric proteins. Cancer Res 70(7):2604–2612. doi:10.1158/0008-5472.CAN-09-2548 0008-5472.CAN-09-2548 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F (2011) Chimeric DNA Vaccines against ErbB2+ Carcinomas: from mice to humans. Cancers (Basel) 3(3):3225–3241. doi:10.3390/cancers3033225 cancers3033225 [pii]

    Article  CAS  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138. doi:10.1084/jem.20080099 jem.20080099 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ, Jr., Colligon TA, Trosko JA, Leinbach LI, Pletcher CH, Tweed CK, DeMichele A, Fox KR, Domchek SM, Riley JL, Vonderheide RH (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4(134):134ra162. doi:10.1126/scitranslmed.3003330 4/134/134ra62 [pii]

  • Riccardo F, Iussich S, Maniscalco L, Lorda-Mayayo S, La Rosa G, Arigoni M, De Maria R, Gattino F, Lanzardo S, Lardone E, Martano M, Morello E, Prestigio S, Fiore A, Quaglino E, Zabarino S, Ferrone S, Buracco P, Cavallo F (2014) CSPG4-specific immunity and survival prolongation in dogs with oral malignant melanoma immunized with human CSPG4 DNA. Clin Cancer Res. doi:clincanres.3042.2013 [pii] 1078-0432.CCR-13-3042 [pii] 10.1158/1078-0432.CCR-13-3042

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120. doi:10.1038/nrc2326

    Article  CAS  PubMed  Google Scholar 

  • Rolla S, Nicolo C, Malinarich S, Orsini M, Forni G, Cavallo F, Ria F (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177(11):7626–7633 177/11/7626 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rukazenkov Y, Speake G, Marshall G, Anderton J, Davies BR, Wilkinson RW, Mark Hickinson D, Swaisland A (2009) Epidermal growth factor receptor tyrosine kinase inhibitors: similar but different? Anticancer Drugs 20(10):856–866. doi:10.1097/CAD.0b013e32833034e1

    Article  CAS  PubMed  Google Scholar 

  • Sabado RL, Bhardwaj N (2013) Dendritic cell immunotherapy. Ann NY Acad Sci 1284:31–45. doi:10.1111/nyas.12125

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Takahashi T, Yamazaki S, Kuniyasu Y, Itoh M, Sakaguchi N, Shimizu J (2001) Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity. Microbes Infect 3(11):911–918. doi:10.1016/S1286-4579(01)01452-6

    Article  CAS  PubMed  Google Scholar 

  • Sarnaik AA, Yu B, Yu D, Morelli D, Hall M, Bogle D, Yan L, Targan S, Solomon J, Nichol G, Yellin M, Weber JS (2011) Extended dose ipilimumab with a peptide vaccine: immune correlates associated with clinical benefit in patients with resected high-risk stage IIIc/IV melanoma. Clin Cancer Res 17(4):896–906. doi:10.1158/1078-0432.CCR-10-2463 1078-0432.CCR-10-2463 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shak S (1999) Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol 26(4 Suppl 12):71–77

    Google Scholar 

  • Shedlock DJ, Weiner DB (2000) DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 68(6):793–806

    CAS  PubMed  Google Scholar 

  • Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, Belz GT (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5(11):1143–1148. doi:10.1038/ni1129 ni1129 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sobel ES, Kakkanaiah VN, Kakkanaiah M, Cheek RL, Cohen PL, Eisenberg RA (1994) T-B collaboration for autoantibody production in lpr mice is cognate and MHC-restricted. J Immunol 152(12):6011–6016

    CAS  PubMed  Google Scholar 

  • Soong RS, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF (2013) Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53. PLoS One 8(2):e56912. doi:10.1371/journal.pone.0056912 PONE-D-12-35852 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spears M, Taylor KJ, Munro AF, Cunningham CA, Mallon EA, Twelves CJ, Cameron DA, Thomas J, Bartlett JM (2012) In situ detection of HER2:HER2 and HER2:HER3 protein-protein interactions demonstrates prognostic significance in early breast cancer. Breast Cancer Res Treat 132(2):463–470. doi:10.1007/s10549-011-1606-z

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FK, Ottensmeier CH, Rice J (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22(2):264–270. doi:10.1016/j.coi.2010.01.019 S0952-7915(10)00020-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FK, Mander A, Chudley L, Ottensmeier CH (2011) DNA fusion vaccines enter the clinic. Cancer Immunol Immunother 60(8):1147–1151. doi:10.1007/s00262-011-1042-2

    Article  CAS  PubMed  Google Scholar 

  • Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30(1):125–140. doi:10.1007/s10555-011-9280-5

    Article  CAS  PubMed  Google Scholar 

  • Stritesky GL, Jameson SC, Hogquist KA (2012) Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30:95–114. doi:10.1146/annurev-immunol-020711-075035

    Article  CAS  PubMed  Google Scholar 

  • Takenaka M, Seki N, Toh U, Hattori S, Kawahara A, Yamaguchi T, Koura K, Takahashi R, Otsuka H, Takahashi H, Iwakuma N, Nakagawa S, Fujii T, Sasada T, Yamaguchi R, Yano H, Shirouzu K, Kage M (2013) FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol 1(4):625–632. doi:10.3892/mco.2013.107 mco-01-04-0625 [pii]

    PubMed  PubMed Central  Google Scholar 

  • Thomas SK, Kwak LW (2012) Lymphoma vaccine therapy: next steps after a positive, controlled phase III clinical trial. Semin Oncol 39(3):253–262. doi:10.1053/j.seminoncol.2012.02.014 S0093-7754(12)00055-3

    Article  CAS  PubMed  Google Scholar 

  • Viehl CT, Moore TT, Liyanage UK, Frey DM, Ehlers JP, Eberlein TJ, Goedegebuure PS, Linehan DC (2006) Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol 13(9):1252–1258. doi:10.1245/s10434-006-9015-y

    Article  PubMed  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261. doi:10.1038/nm.2883 nm.2883 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE, Livingston PO, Heywood M, Riviere I, Panageas KS, Terzulli SL, Perales MA (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15(11):2044–2050. doi:10.1038/sj.mt.6300290 6300290 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wong AL, Lee SC (2012) Mechanisms of resistance to trastuzumab and novel therapeutic strategies in HER2-positive breast cancer. Int J Breast Cancer 2012:415170. doi:10.1155/2012/415170

    Article  PubMed  PubMed Central  Google Scholar 

  • Wykosky J, Fenton T, Furnari F, Cavenee WK (2011) Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chin J Cancer 30(1):5–12. doi:10.5732/cjc.010.10542 1944-446X2011015 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S (2004) Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 16(11):1643–1656. doi:10.1093/intimm/dxh165 dxh165 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yu WY, Chuang TF, Guichard C, El-Garch H, Tierny D, Laio AT, Lin CS, Chiou KH, Tsai CL, Liu CH, Li WC, Fischer L, Chu RM (2011) Chicken HSP70 DNA vaccine inhibits tumor growth in a canine cancer model. Vaccine 29(18):3489–3500. doi:10.1016/j.vaccine.2011.02.031 S0264-410X(11)00244-1

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ku GY, Gallardo HF, Orlandi F, Manukian G, Rasalan TS, Xu Y, Li H, Vyas S, Mu Z, Chapman PB, Krown SE, Panageas K, Terzulli SL, Old LJ, Houghton AN, Wolchok JD (2009) Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun 9:5 090505 [pii]

    PubMed  PubMed Central  Google Scholar 

  • Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 108(40):16723–16728. doi:10.1073/pnas.1110814108 1110814108 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Ku GY, Adamow M, Mu Z, Tandon S, Hannaman D, Chapman P, Schwartz G, Carvajal R, Panageas KS, Houghton AN, Wolchok JD (2013) Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. J Immunother Cancer 1:20. doi:10.1186/2051-1426-1-202051-1426-1-20 2051-1426-1-20 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Smith DS, Guth A, Wysocki LJ (2001) A receptor presentation hypothesis for T cell help that recruits autoreactive B cells. J Immunol 166(3):1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Zinkernagel RM, Hengartner H (2001) Regulation of the immune response by antigen. Science 293(5528):251–253. doi:10.1126/science.1063005293/5528/251 293/5528/251 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Dale Lawson for his revision and editing of the article. This work was supported by grants from the Italian Association for Cancer Research (IG 11675), University of Torino, the Compagnia di San Paolo (Progetti di Ricerca Ateneo/CSP), and Fondazione Ricerca Molinette Onlus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Quaglino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riccardo, F., Bolli, E., Macagno, M., Arigoni, M., Cavallo, F., Quaglino, E. (2014). Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. In: Savelyeva, N., Ottensmeier, C. (eds) Cancer Vaccines. Current Topics in Microbiology and Immunology, vol 405. Springer, Cham. https://doi.org/10.1007/82_2014_426

Download citation

Publish with us

Policies and ethics