Skip to main content

Regulation of Nucleocytoplasmic Transport by ADP-Ribosylation: The Emerging Role of Karyopherin-β1 Mono-ADP-Ribosylation by ARTD15

  • Chapter
  • First Online:
Book cover Endogenous ADP-Ribosylation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 384))

Abstract

Post-translational modifications of a cellular protein by mono- and poly-ADP-ribosylation involve the cleavage of NAD + , with the release of its nicotinamide moiety. This is accompanied by the transfer of a single (mono-) or several (poly-) ADP-ribose molecules from NAD + to a specific amino-acid residue of the protein. Recent reports have shed new light on the correlation between NAD + -dependent ADP-ribosylation reactions and the endoplasmic reticulum, in addition to the well-documented roles of these reactions in the nucleus and mitochondria. We have demonstrated that ARTD15/PARP16 is a novel mono-ADP-ribosyltransferase with a new intracellular location, as it is associated with the endoplasmic reticulum. The endoplasmic reticulum, which is a membranous network of interconnected tubules and cisternae, is responsible for specialised cellular functions, including protein folding and protein transport. Maintenance of specialised cellular functions requires the correct flow of information between separate organelles that is made possible through the nucleocytoplasmic trafficking of proteins. ARTD15 appears to have a role in nucleocytoplasmic shuttling, through karyopherin-β1 mono-ADP-ribosylation. This is in line with the emerging role of ADP-ribosylation in the regulation of intracellular trafficking of cellular proteins. Indeed, other, ADP-ribosyltransferases like ARTD1/PARP1, have been reported to regulate nucleocytoplasmic trafficking of crucial proteins, including p53 and NF-κB, and as a consequence, to modulate the subcellular localisation of these proteins under both physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

ADP-ribosyltransferase

ARH:

ADP-ribosylhydrolase

ARTC:

Clostridia-toxin-like ART

ARTD:

Diphtheria-toxin-like ART

CoaSt6:

Collaborator of Stat6

ERAD:

Endoplasmic-reticulum-associated degradation

GAP:

Guanine-nucleotide activating proteins

GEF:

Guanine-nucleotide exchange factors

GPI:

Glycosylphosphatidylinositol

GSK:

Glycogen synthase kinase

hnRNP:

Heterogeneous nuclear ribonucleoprotein

Kapα:

Karyopherin-α

Kapβ1:

Karyopherin-β1

IL:

Interleukin

IRE1:

Inositol-requiring 1

NEMO:

Nuclear factor (NF)-κB essential modulator

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NPC:

Nuclear pore complex

NTF2:

Nuclear transport factor 2

PAR(P):

Poly-ADP-ribose (polymerase)

PARG:

Poly-ADP-ribose glycohydrolase

PERK:

Double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase

RanBP:

Ran-binding protein

RCC1:

Regulator of chromosome condensation 1

RRM:

RNA recognition motif

Stat:

Signal transducer and activator of transcription

UPR:

Unfolded protein response

References

  • Aitchison JD, Rout MP (2012) The yeast nuclear pore complex and transport through it. Genetics 190:855–883

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM et al (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    PubMed  CAS  Google Scholar 

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    PubMed  CAS  Google Scholar 

  • Baltimore D (2011) NF-kappaB is 25. Nat Immunol 12:683–685

    PubMed  CAS  Google Scholar 

  • Ben-Efraim I, Gerace L (2001) Gradient of increasing affinity of importin & #x03B2; for nucleoporins along the pathway of nuclear import. J Cell Biol 152:411–417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994) RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci USA 91:2587–2591

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354:80–82

    PubMed  CAS  Google Scholar 

  • Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808:937–946

    PubMed  CAS  Google Scholar 

  • Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123:2527–2532

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cho SH, Ahn AK, Bhargava P et al (2011) Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci USA 108:15972–15977

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64:1891–1914

    PubMed  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Thibier C et al (2004) Importin & #x03B2; is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J Cell Sci 117:6511–6522

    PubMed  CAS  Google Scholar 

  • Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477

    PubMed  CAS  Google Scholar 

  • Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13:310–319

    PubMed  CAS  Google Scholar 

  • Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22:1953–1958

    PubMed  CAS  PubMed Central  Google Scholar 

  • Curtin NJ (2012) Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors. In: Drug discovery today: disease models (Elsevier B.V.), pp e51–e58

    Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    PubMed  PubMed Central  Google Scholar 

  • Dani N, Barbosa AJ, Del Rio A, Di Girolamo M (2013) ADP-Ribosylated proteins as old and new drug targets for anticancer therapy: the example of ARF6. Curr Pharm Des 19:624–633

    PubMed  CAS  Google Scholar 

  • David-Pfeuty T, Chakrani F, Ory K, Nouvian-Dooghe Y (1996) Cell cycle-dependent regulation of nuclear p53 traffic occurs in one subclass of human tumor cells and in untransformed cells. Cell Growth Differ 7:1211–1225

    PubMed  CAS  Google Scholar 

  • Di Girolamo M, Dani N, Stilla A, Corda D (2005) Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. Febs J 272:4565–4575

    PubMed  Google Scholar 

  • Di Girolamo M, Fabrizio G, Scarpa ES, Di Paola S (2014) NAD + -dependent enzymes at the endoplasmic reticulum. Curr Top Med Chem 13:3001–3010

    Google Scholar 

  • Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M (2012) PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies Karyopherin-β1. PLoS ONE 7:e37352

    PubMed  PubMed Central  Google Scholar 

  • Fabbro M, Henderson BR (2003) Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp Cell Res 282:59–69

    PubMed  CAS  Google Scholar 

  • Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4:757–766

    PubMed  CAS  Google Scholar 

  • Feijs KL, Kleine H, Braczynski A et al (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Cell Commun Signal 11:5

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer HE, Lichtiger B, Glassman AB (1995) Implications of human T-lymphotropic virus type-I and type-II testing in donors and patients. Ann Clin Lab Sci 25:373–380

    PubMed  CAS  Google Scholar 

  • Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60:1659–1688

    PubMed  CAS  Google Scholar 

  • Friedrich B, Quensel C, Sommer T, Hartmann E, Kohler M (2006) Nuclear localization signal and protein context both mediate importin & #x03B1; specificity of nuclear import substrates. Mol Cell Biol 26:8697–8709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gall JG (1954) Observations on the nuclear membrane with the electron microscope. Exp Cell Res 7:197–200

    PubMed  CAS  Google Scholar 

  • Goenka S, Cho SH, Boothby M (2007) Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem 282:18732–18739

    PubMed  CAS  Google Scholar 

  • Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin & #x03B1: a multipurpose nuclear-transport receptor. Trends Cell Biol 14:505–514

    PubMed  CAS  Google Scholar 

  • Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  CAS  Google Scholar 

  • Hadian K, Krappmann D (2011) Signals from the nucleus: activation of NF-kappaB by cytosolic ATM in the DNA damage response. Sci Signal 4:pe2

    Google Scholar 

  • Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    PubMed  CAS  Google Scholar 

  • Hetzer M, Gruss OJ, Mattaj IW (2002) The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 4:E177–184

    PubMed  CAS  Google Scholar 

  • Hobbs HH, Russell DW, Brown MS, Goldstein JL (1990) The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 24:133–170

    PubMed  CAS  Google Scholar 

  • Hollingsworth TJ, Gross AK (2012) Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol 293:1–44

    PubMed  CAS  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    PubMed  CAS  Google Scholar 

  • Jwa M, Chang P (2012) PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat Cell Biol 14:1223–1230

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalab P, Heald R (2008) The RanGTP gradient - a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    PubMed  CAS  Google Scholar 

  • Kalbfleisch T, Cambon A, Wattenberg BW (2007) A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8:1687–1694

    PubMed  CAS  Google Scholar 

  • Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    PubMed  CAS  Google Scholar 

  • Kameoka M, Ota K, Tetsuka T, Tanaka Y, Itaya A, Okamoto T, Yoshihara K (2000) Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem J 346(Pt 3):641–649

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kanai M, Hanashiro K, Kim SH et al (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9:1175–1183

    PubMed  CAS  Google Scholar 

  • Keeshan K, Cotter TG, McKenna SL (2003) Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br J Haematol 123:34–44

    PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Adriouch S, Bannas P et al (2006) ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Ann Med 38:188–199

    PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729

    PubMed  CAS  Google Scholar 

  • Komarova EA, Zelnick CR, Chin D et al (1997) Intracellular localization of p53 tumor suppressor protein in & #x03B3;-irradiated cells is cell cycle regulated and determined by the nucleus. Cancer Res 57:5217–5220

    PubMed  CAS  Google Scholar 

  • Kudo N, Wolff B, Sekimoto T et al (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547

    PubMed  CAS  Google Scholar 

  • Kutay U, Guttinger S (2005) Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol 15:121–124

    PubMed  CAS  Google Scholar 

  • la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    PubMed  Google Scholar 

  • Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 37:801–813

    PubMed  CAS  Google Scholar 

  • Loschberger A, van de Linde S, Dabauvalle MC et al (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575

    PubMed  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maimon T, Elad N, Dahan I, Medalia O (2012) The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20:998–1006

    PubMed  CAS  Google Scholar 

  • Malanga M, Althaus FR (2011) Noncovalent protein interaction with poly(ADP-ribose). Methods Mol Biol 780:67–82

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    PubMed  CAS  Google Scholar 

  • Michael WM (2000) Nucleocytoplasmic shuttling signals: two for the price of one. Trends Cell Biol 10:46–50

    PubMed  CAS  Google Scholar 

  • Michael WM, Eder PS, Dreyfuss G (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. Embo J 16:3587–3598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98:1528–1535

    PubMed  CAS  Google Scholar 

  • Miyamoto S (2011) Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res 21:116–130

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92:4407–4411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moore MS, Blobel G (1994a) A G protein involved in nucleocytoplasmic transport: the role of Ran. Trends Biochem Sci 19:211–216

    PubMed  CAS  Google Scholar 

  • Moore MS, Blobel G (1994b) Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc Natl Acad Sci USA 91:10212–10216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690

    PubMed  CAS  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034

    PubMed  PubMed Central  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139

    PubMed  PubMed Central  Google Scholar 

  • Pante N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13:425–434

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paschal BM, Delphin C, Gerace L (1996) Nucleotide-specific interaction of Ran/TC4 with nuclear transport factors NTF2 and p97. Proc Natl Acad Sci USA 93:7679–7683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paschal BM, Gerace L (1995) Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol 129:925–937

    PubMed  CAS  Google Scholar 

  • Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R et al (2009) PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 47:13–26

    PubMed  CAS  Google Scholar 

  • Polo S, Confalonieri S, Salcini AE, Di Fiore PP (2003) EH and UIM: endocytosis and more. Sci STKE 2003, re17

    Google Scholar 

  • Poon IK, Jans DA (2005) Regulation of nuclear transport: central role in development and transformation? Traffic 6:173–186

    PubMed  CAS  Google Scholar 

  • Poortinga G, Hannan KM, Snelling H et al (2004) MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. Embo J 23:3325–3335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prokocimer M, Peller S (2012) Cytoplasmic sequestration of wild-type p53 in a patient with therapy-related resistant AML: first report. Med Oncol 29:1148–1150

    PubMed  Google Scholar 

  • Quimby BB, Dasso M (2003) The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 15:338–344

    PubMed  CAS  Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    PubMed  CAS  Google Scholar 

  • Rensen WM, Mangiacasale R, Ciciarello M, Lavia P (2008) The GTPase Ran: regulation of cell life and potential roles in cell transformation. Front Biosci 13:4097–4121

    PubMed  CAS  Google Scholar 

  • Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D (1998) NTF2 mediates nuclear import of Ran. Embo J 17:6587–6598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    PubMed  CAS  Google Scholar 

  • Rosenthal F, Feijs KL, Frugier E et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20:502–507

    PubMed  CAS  Google Scholar 

  • Schnell DJ, Hebert DN (2003) Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112:491–505

    PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    PubMed  CAS  Google Scholar 

  • Seman M, Adriouch S, Haag F, Koch-Nolte F (2004) Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem 11:857–872

    PubMed  CAS  Google Scholar 

  • Shaulsky G, Ben-Ze’ev A, Rotter V (1990) Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene 5:1707–1711

    PubMed  CAS  Google Scholar 

  • Shcherbik N, Haines DS (2004) Ub on the move. J Cell Biochem 93:11–19

    PubMed  CAS  Google Scholar 

  • Siomi H, Dreyfuss G (1995) A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 129:551–560

    PubMed  CAS  Google Scholar 

  • Slade D, Dunstan MS, Barkauskaite E et al (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616–620

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208

    PubMed  CAS  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. Embo J 18:1660–1672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11:490–501

    PubMed  CAS  Google Scholar 

  • Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4:775–789

    PubMed  CAS  Google Scholar 

  • Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P (2007) RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 120:3748–3761

    PubMed  CAS  Google Scholar 

  • Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Matsubara H, Taketani S, Mori Y, Seido T, Inada M (1995) Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 96:2043–2050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci 21:59–64

    PubMed  CAS  Google Scholar 

  • Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, Luscher B (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683

    PubMed  Google Scholar 

  • Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    PubMed  CAS  Google Scholar 

  • Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473

    PubMed  CAS  Google Scholar 

  • Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456

    PubMed  CAS  Google Scholar 

  • Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Aittomaki S, Pesu M, Carter K, Saarinen J, Kalkkinen N, Kieff E, Silvennoinen O (2002) Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. Embo J 21:4950–4958

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yates SP, Taylor PL, Jorgensen R, Ferraris D, Zhang J, Andersen GR, Merrill AR (2005) Structure-function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa. Biochem J 385:667–675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu M, Schreek S, Cerni C et al (2005) PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24:1982–1993

    PubMed  CAS  Google Scholar 

  • Zerfaoui M, Errami Y, Naura AS et al (2010) Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol 185:1894–1902

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong Y, Wang Y, Yang H, Ballar P, Lee JG, Ye Y, Monteiro MJ, Fang S (2011) Importin & #x03B2; Interacts with the Endoplasmic Reticulum-associated Degradation Machinery and Promotes Ubiquitination and Degradation of Mutant & #x03B1;1-Antitrypsin. J Biol Chem 286:33921–33930

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

This paper is dedicated to my husband, Tommaso, and to my children Marta and Valerio, who have suffered the consequences of my passion for research. I am grateful also to the many wonderful colleagues whom I have met during my life in science, here in Italy and abroad, as each of them has helped me to learn something new.

Conflict of interest: The author declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Di Girolamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Girolamo, M. (2014). Regulation of Nucleocytoplasmic Transport by ADP-Ribosylation: The Emerging Role of Karyopherin-β1 Mono-ADP-Ribosylation by ARTD15. In: Koch-Nolte, F. (eds) Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, vol 384. Springer, Cham. https://doi.org/10.1007/82_2014_421

Download citation

Publish with us

Policies and ethics