Advertisement

Pierisins and CARP-1: ADP-Ribosylation of DNA by ARTCs in Butterflies and Shellfish

  • Tsuyoshi Nakano
  • Azusa Takahashi-Nakaguchi
  • Masafumi Yamamoto
  • Masahiko Watanabe
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 384)

Abstract

The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N2 position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.

Keywords

P2X7 Receptor Activity Domain Hard Clam Lepidopteran Insect Guanine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

dsDNA

Double-strand DNA

Gb3

Globotriaosylceramide

Gb4

Globotetraosylceramide

GADPRT

N-glycosidic cholera toxin-like-ADP-ribosyltransferase catalyzing mono-ADP-ribosylation

Notes

Acknowledgments

The authors thank Dr. Ken-Ichi Odagiri for giving us a copy of phylogenic tree drawing.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Braby M, Viar R, Pierce N (2006) Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zool J Linnean Soc 147:239–275CrossRefGoogle Scholar
  3. Carpusca I, Jank T, Aktories K (2006) Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. Mol Microbiol 62:621–630PubMedCrossRefGoogle Scholar
  4. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP (2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–337PubMedCrossRefPubMedCentralGoogle Scholar
  5. Corda D, Di Girolamo M (2002) Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling. Sci STKE 2002:PE53Google Scholar
  6. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22:1953–1958PubMedCrossRefPubMedCentralGoogle Scholar
  7. Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the 462 NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria 463 and T-even bacteriophages. Mol Microbiol 21:667–674PubMedCrossRefGoogle Scholar
  8. Elwell CA, Dreyfus LA (2000) DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 37:952–963PubMedCrossRefGoogle Scholar
  9. Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874PubMedCrossRefGoogle Scholar
  10. Fünfhaus A, Poppinga L, Genersch E (2013) Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ Microbiol 15:2951–2965Google Scholar
  11. Gao D, Wo J, Wo Y-T, Du F, Aroh C, Yan N, Sun L, Chen Z (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906PubMedCrossRefGoogle Scholar
  12. Gargi A, Reno M, Blanke SR (2012) Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally? Front Cell Infect Microbiol 2:Article 124Google Scholar
  13. Gilbert LI, Chino H (1974) Transport of lipids in insects. J Lipid Res 15:439–456PubMedGoogle Scholar
  14. Grieshaber MK, Hardewig I, Kreutzer U, Pörtner H-O (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147PubMedCrossRefGoogle Scholar
  15. Grosjean H (ed) (2009) DNA and RNA modification enzymes: structure, mechanism, function and evolution. Landes Biosciences, AustinGoogle Scholar
  16. Guerra L, Cortes-Bratti X, Guidi R, Frisan T (2011) The biology of the cytolethal distending toxins. Toxins 3:172–190PubMedCrossRefPubMedCentralGoogle Scholar
  17. Higginson AD, Delf J, Ruxton GD, Speed MP (2011) Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. J Anim Ecol 80:384–392PubMedCrossRefGoogle Scholar
  18. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925PubMedCrossRefGoogle Scholar
  19. Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219PubMedCrossRefGoogle Scholar
  20. Kanazawa T, Watanabe M, Matsushima-Hibiya Y, Kono T, Tanaka N, Koyama K, Sugimura T, Wakabayashi K (2001) Distinct roles for the N- and C-terminal regions in the cytotoxicity of pierisin-1 a putative ADP-ribosylating toxin from cabbage butterfly, against mammalian cells. Proc Natl Acad Sci USA 98:2226–2231PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kanazawa T, Kono T, Watanabe M, Matsushima-Hibiya Y, Nakano T, Koyama K, Tanaka N, Sugimura T, Wakabayashi K (2002) Bcl-2 blocks apoptosis caused by pierisin-1, a guanine-specific ADP-ribosylating toxin from the cabbage butterfly. Biochem Biophys Res Commun 296:20–25PubMedCrossRefGoogle Scholar
  22. Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (2002) Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta 1553:123–139PubMedCrossRefGoogle Scholar
  23. Kono T, Watanabe M, Koyama K, Kishimoto T, Fukushima S, Sugimura T, Wakabayashi K (1999) Cytotoxic activity of pierisin, from the cabbage butterfly, Pieris rapae, in various human cancer cell lines. Cancer Lett 137:75–81PubMedCrossRefGoogle Scholar
  24. Koyama K, Wakabayashi K, Masutani M, Koiwai K, Watanabe M, Yamazaki S, Kono T, Miki K, Sugimura T (1996) Presence in Pieris rapae of cytotoxic activity against human carcinoma cells. Jpn J Cancer Res 87:1259–1262PubMedCrossRefGoogle Scholar
  25. Koyama S, Akira S, Ishii KJ (2010) Immune recognition of nucleic acids and their metabolites. In: Kikuchi Y, Rykova EY (eds) Extracellular nucleic acids. Springer, Heiderberg, pp 209–227CrossRefGoogle Scholar
  26. Krasteva PV, Giglio KM, Sondermann H (2012) Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP. Protein Sci 21:929–948PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lara-Tejero M, Galan JE (2000) A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354–357PubMedCrossRefGoogle Scholar
  28. Lubran MM (1988) Bacterial toxins. Ann Clin Lab Sci 18:58–71PubMedGoogle Scholar
  29. Maddison DR, Maddison WP (2005) MacClade 4: analysis of phylogeny and character evolution. http://macclade.org
  30. Marsh N, Rothschild M (1974) Aposematic and cryptic Lepidoptera tested on the mouse. J Zool Lond 174:89–122CrossRefGoogle Scholar
  31. Masignani V, Pizza M, Rappuoli R (2000) Common features of ADP-ribosyltransferase. In: Aktories K, Just I (eds) Bacterial protein toxins, vol 145. Springer, Berlin, pp 2144Google Scholar
  32. Matsumoto Y, Nakano T, Yamamoto M, Matsushima-Hibiya Y, Odagiri K, Yata O, Koyama K, Sugimura T, Wakabayashi K (2008) Distribution of cytotoxic and DNA ADP-ribosylating activity in crude extracts from butterflies among the family Pieridae. Proc Natl Acad Sci USA 105:2516–2520PubMedCrossRefPubMedCentralGoogle Scholar
  33. Matsushima-Hibiya Y, Watanabe M, Hidari KI, Miyamoto D, Suzuki Y, Kasama T, Kanazawa T, Koyama K, Sugimura T, Wakabayashi K (2003) Identification of glycosphingolipid receptors for pierisin-1, a guanine-specific ADP-ribosylating toxin from the cabbage butterfly. J Biol Chem 278:9972–9978PubMedCrossRefGoogle Scholar
  34. Matsushima-Hibiya Y, Watanabe M, Kono T, Kanazawa T, Koyama K, Sugimura T, Wakabayashi K (2000) Purification and cloning of pierisin-2, an apoptosis-inducing protein from the cabbage butterfly, Pieris brassicae. Eur J Biochem 267:5742–5750PubMedCrossRefGoogle Scholar
  35. Nakano T, Matsushima-Hibiya Y, Yamamoto M, Enomoto S, Matsumoto Y, Totsuka Y, Watanabe M, Sugimura T, Wakabayashi K (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci USA 103:13652–13657PubMedCrossRefPubMedCentralGoogle Scholar
  36. Nakano T, Matsushima-Hibiya Y, Yamamoto M, Takahashi-Nakaguchi A, Fukuda H, Ono M, Takamura-Enya T, Kinashi H, Totsuka Y (2013) ADP-ribosylation of guanosine by SCO5461 protein secreted from Streptomyces coelicolor. Toxicon 63:55–63PubMedCrossRefGoogle Scholar
  37. Natori S (2010) Molecules participating in insect immunity of Sarcophaga peregrina. Proc Jpn Acad Ser B 86:927–938CrossRefGoogle Scholar
  38. Odagiri K (2009) Distribution of pierisin-like activities in the genus Appias. Insect Nat 44:20–23Google Scholar
  39. Orth JH, Schorch B, Boundy S, Ffrench-Constant R, Kubick S, Aktories K (2011) Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon 57:199–207PubMedCrossRefGoogle Scholar
  40. Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. J Exp Biol 206:4167–4178PubMedCrossRefGoogle Scholar
  41. Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases: implications for the origin of exotoxins and their human homologues. Trends Microbiol 9:302–307PubMedCrossRefGoogle Scholar
  42. Reinert DJ, Carpusca I, Aktories K, Schulz GE (2006) Structure of the mosquitocidal toxin from Bacillus sphaericus. J Mol Biol 357:1226–1236PubMedCrossRefGoogle Scholar
  43. Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, Seman M, Haag F, Koch-Nolte F (2009) NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J Immunol 182:2898–2908PubMedCrossRefGoogle Scholar
  44. Shiga A, Kakamu S, Sugiyama Y, Shibata M, Makino E, Enomoto M (2006) Acute toxicity of pierisin-1, a cytotoxic protein from Pieris rapae, in mouse and rat. J Toxicol Sci 31:123–137PubMedCrossRefGoogle Scholar
  45. Shiotani B, Watanabe M, Totsuka Y, Sugimura T, Wakabayashi K (2005) Involvement of nucleotide excision repair (NER) system in repair of mono ADP-ribosylated dG adducts produced by pierisin-1, a cytotoxic protein from cabbage butterfly. Mutat Res 572:150–155PubMedCrossRefGoogle Scholar
  46. Shiotani B, Kobayashi M, Watanabe M, Yamamoto K, Sugimura T, Wakabayashi K (2006) Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol Cancer Res 4:125–133PubMedCrossRefGoogle Scholar
  47. Schirmer J, Wieden HJ, Rodnina MV, Aktories K (2002) Inactivation of the elongation factor Tu by mosquitocidal toxin-catalyzed mono-ADP-ribosylation. Appl Environ Microbiol 68:4894–4899PubMedCrossRefPubMedCentralGoogle Scholar
  48. Shogomori H, Kobayashi T (2008) Lysenin: a sphingomyelin specific pore-forming toxin. Biochim Biophys Acta 1780:612–618PubMedCrossRefGoogle Scholar
  49. Smedley SR, Schroeder FC, Weibel DB, Meinwald J, Lafleur KA, Renwick JA, Rutowski R, Eisner T (2002) Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proc Natl Acad Sci USA 99:6822–6827PubMedCrossRefPubMedCentralGoogle Scholar
  50. de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol BioSyst 8:1661–1677PubMedCrossRefGoogle Scholar
  51. Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J Bacteriol 149:4485–4493CrossRefGoogle Scholar
  52. Stevens LA, Levine RL, Gochuico BR, Moss J (2009) ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Proc Natl Acad Sci USA 106:19796–19800PubMedCrossRefPubMedCentralGoogle Scholar
  53. Szirák K, Keserű J, Biró S, Schmelczer I, Barabás G, Penyige A (2012) Disruption of SCO5461 gene coding for a mono-ADP-ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in Streptomyces coelicolor. J Microbiol 50:409–418PubMedCrossRefGoogle Scholar
  54. Takahashi-Nakaguchi A, Matsumoto Y, Yamamoto M, Iwabuchi K, Totsuka Y, Sugimura T, Wakabayashi K (2013) Demonstration of cytotoxicity against wasps by pierisin-1: a possible defense factor in the cabbage white butterfly. PLoS One 8:e60539PubMedCrossRefPubMedCentralGoogle Scholar
  55. Takamura-Enya T, Watanabe M, Totsuka Y, Kanazawa T, Matsushima-Hibiya Y, Koyama K, Sugimura T, Wakabayashi K (2001) Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc Natl Acad Sci USA 98:12414–12419PubMedCrossRefPubMedCentralGoogle Scholar
  56. Takamura-Enya T, Watanabe M, Koyama K, Sugimura T, Wakabayashi K (2004) Mono(ADP-ribosyl)ation of the N2 amino groups of guanine residues in DNA by pierisin-2, from the cabbage butterfly, Pieris brassicae. Biochem Biophys Res Commun 323:579–582PubMedCrossRefGoogle Scholar
  57. Thanabalu T, Hindley J, Jackson-Yap J, Berry C (1991) Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. J Bacteriol 173:2776–2785PubMedPubMedCentralGoogle Scholar
  58. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefPubMedCentralGoogle Scholar
  59. Totsuka Y, Kawanishi M, Nishigaki R, Matsukawa K, Yagi T, Takamura-Enya T, Watanabe M, Sugimura T, Wakabayashi K (2003) Analysis of HPRT and supF mutations caused by pierisin-1, a guanine specific ADP-ribosylating toxin derived from the cabbage butterfly. Chem Res Toxicol 16:945–952PubMedCrossRefGoogle Scholar
  60. Uwo MF, Ui-Tei K, Park P, Takeda M (2002) Replacement of midgut epithelium in the greater wax moth, Galleria mellonella, during larval–pupal moult. Cell Tissue Res 308:319–331PubMedCrossRefGoogle Scholar
  61. Watanabe M, Kono T, Koyama K, Sugimura T, Wakabayashi K (1998) Purification of pierisin, an inducer of apoptosis in human gastric carcinoma cells, from cabbage butterfly, Pieris rapae. Jpn J Cancer Res 89:556–561PubMedCrossRefGoogle Scholar
  62. Watanabe M, Kono T, Matsushima-Hibiya Y, Kanazawa T, Nishisaka N, Kishimoto T, Koyama K, Sugimura T, Wakabayashi K (1999) Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: possible involvement of ADP-ribosylation in its activity. Proc Natl Acad Sci USA 96:10608–10613PubMedCrossRefPubMedCentralGoogle Scholar
  63. Watanabe M, Enomoto S, Takamura-Enya T, Nakano T, Koyama K, Sugimura T, Wakabayashi K (2004a) Enzymatic properties of pierisin-1 and Its N-terminal domain, a guanine-specific ADP-ribosyltransferase from the cabbage butterfly. J Biochem 135:471–477PubMedCrossRefGoogle Scholar
  64. Watanabe M, Nakano T, Shiotani B, Matsushima-Hibiya Y, Kiuchi M, Yukuhiro F, Kanazawa T, Koyama K, Sugimura T, Wakabayashi K (2004b) Developmental stage-specific expression and tissue distribution of pierisin-1, a guanine-specific ADP-ribosylating toxin, in Pieris rapae. Comp Biochem Physiol A Mol Integr Physiol 139:125–131PubMedCrossRefGoogle Scholar
  65. Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932PubMedCrossRefPubMedCentralGoogle Scholar
  66. Wigglesworth VB (1972) Digestion and nutrition. In The principles of insect physiology. Chapman and Hall, London, pp 476–552Google Scholar
  67. Yamamoto M, Nakano T, Matshshima-Hibiya Y, Totsuka Y, Takahashi-Nakaguchi A, Matsumoto Y, Sugimura T, Wakabayashi K (2009) Molecular cloninig of apoptosis-inducing pierisin-like proteins, from two species of white butterfly, Pieris melete and Aporia crataegi. Comp Biochem Physiol B 154:326–333PubMedCrossRefGoogle Scholar
  68. Yamamoto M, Takahashi-Nakaguchi A, Matsushima-Hibiya Y, Nakano T, Totsuka Y, Imanishi S, Mitsuhashi J, Watanabe M, Nakagama H, Sugimura T, Wakabayashi K (2011) Nucleotide sequence and chromosomal localization of the gene for pierisin-1, a DNA ADP-ribosylating protein, in the cabbage butterfly Pieris rapae. Genetica 139:1251–1258PubMedCrossRefGoogle Scholar
  69. de Zwaan A, Cortesi P, van den ThiHart G, Roos J, Storey KB (1991) Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis. Mar Biol 111:343–351CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tsuyoshi Nakano
    • 1
    • 2
  • Azusa Takahashi-Nakaguchi
    • 3
  • Masafumi Yamamoto
    • 4
  • Masahiko Watanabe
    • 5
  1. 1.Division of Cancer Development SystemNational Cancer Center Research InstituteTokyoJapan
  2. 2.Central Research Laboratories, Sysmex CorporationKobeJapan
  3. 3.Medical Mycology Research CenterChiba UniversityChibaJapan
  4. 4.Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
  5. 5.School of PharmacyShujitsu UniversityOkayamaJapan

Personalised recommendations