Skip to main content

The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System

  • Chapter
  • First Online:
Endogenous ADP-Ribosylation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 384))

Abstract

Catalysis of NAD+-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin–antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.

Supplementary Material

A list of Genbank identifier and domain architectures of the proteins discussed in this chapter might be found at: ftp://ftp.ncbi.nih.gov/pub/aravind/ADPR/ADPR.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriouch S, Ohlrogge W, Haag F, Koch-Nolte F, Seman M (2001) Rapid induction of naive T cell apoptosis by ecto-nicotinamide adenine dinucleotide: requirement for mono(ADP-ribosyl)transferase 2 and a downstream effector. J Immunol 167(1):196–203

    Article  PubMed  CAS  Google Scholar 

  • Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L (2012) Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol Cell Proteomics 11(6):M111 014233

    Google Scholar 

  • Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 37(11):3723–3738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anantharaman V, Iyer LM, Aravind L (2012) Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Mol Biosyst 8(12):3142–3165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36(Database issue):D419–D425

    Google Scholar 

  • Aravind L (2000) Guilt by association: contextual information in genome analysis. Genome Res 10(8):1074–1077

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM (2012) Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2:89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baysarowich J, Koteva K, Hughes DW et al (2008) Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci U S A 105(12):4886–4891

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bazan JF, Koch-Nolte F (1997) Sequence and structural links between distant ADP-ribosyltransferase families. Adv Exp Med Biol 419:99–107

    Article  PubMed  CAS  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. W.H. Freeman, New York

    Google Scholar 

  • Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 82:91–118

    Article  PubMed  CAS  Google Scholar 

  • Burroughs AM, Ando Y, Aravind L (2013) New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Wiley Interdiscip Rev RNA 5(2):141–181

    Google Scholar 

  • Carpusca I, Jank T, Aktories K (2006) Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. Mol Microbiol 62(3):621–630

    Article  PubMed  CAS  Google Scholar 

  • Chambon P, Weil J, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    Article  PubMed  CAS  Google Scholar 

  • Citarelli M, Teotia S, Lamb RS (2010) Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 10:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen-Armon M, Visochek L, Katzoff A et al (2004) Long-term memory requires polyADP-ribosylation. Science 304(5678):1820–1822

    Article  PubMed  CAS  Google Scholar 

  • Collier R, Pappenheimer A (1964) Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J Exp Med 120:1019–1039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22(9):1953–1958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dassa B, Yanai I, Pietrokovski S (2004) New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet 20(11):538–542

    Article  PubMed  CAS  Google Scholar 

  • de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol Biosyst 8(6):1661–1677

    Article  PubMed  Google Scholar 

  • Dunigan DD, Cerny RL, Bauman AT et al (2012) Paramecium bursaria chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J Virol 86(16):8821–8834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fieldhouse RJ, Turgeon Z, White D, Merrill AR (2010) Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases. PLoS Comput Biol 6(12):e1001029

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Tate J, et al (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222

    Google Scholar 

  • Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260(1):273–279

    Article  PubMed  CAS  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447(7142):284–288

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Salcedo JA, Gijon P, Nolan DP, Tebabi P, Pays E (2003) A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO J 22(21):5851–5862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C (2009) Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev 73(3):529–541 (Table of Contents)

    Google Scholar 

  • Glowacki G, Braren R, Firner K et al (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 11(7):1657–1670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guse AH, Lee HC (2008) NAADP: a universal Ca2+ trigger. Sci Signal 1(44):re10

    Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954

    Article  PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6(10):932–936

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Lackey JG, Hsu HC et al (2008) An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA 14(2):225–232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawse WF, Wolberger C (2009) Structure-based mechanism of ADP-ribosylation by sirtuins. J Biol Chem 284(48):33654–33661

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hofmann A, Zdanov A, Genschik P, Ruvinov S, Filipowicz W, Wlodawer A (2000) Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction. EMBO J 19(22):6207–6217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Makarova KS, Koonin EV, Aravind L (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32(17):5260–5279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iyer LM, Anantharaman V, Wolf MY, Aravind L (2008) Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38(1):1–31

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Zhang D, Rogozin IB, Aravind L (2011) Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res 39(22):9473–9497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang H, Khan S, Wang Y et al (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443):110–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang J, Zhang YB, Li S, Yu FF, Sun F, Gui JF (2009) Expression regulation and functional characterization of a novel interferon inducible gene Gig2 and its promoter. Mol Immunol 46(15):3131–3140

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R, Wang Y, Visschedyk D, Merrill AR (2008a) The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9(8):802–809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jorgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR (2008b) Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283(16):10671–10678

    Article  PubMed  CAS  Google Scholar 

  • Karras GI, Kustatscher G, Buhecha HR et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kleine H, Poreba E, Lesniewicz K et al (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Reche P, Haag F, Bazan F (2001) ADP-ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. J Biotechnol 92(2):81–87

    Article  PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Ruger W (1994) The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203(2):294–298

    Article  PubMed  CAS  Google Scholar 

  • Krasnov A, Timmerhaus G, Schiotz BL et al (2011) Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Mol Immunol 49(1–2):163–174

    Article  PubMed  CAS  Google Scholar 

  • Laing S, Unger M, Koch-Nolte F, Haag F (2011) ADP-ribosylation of arginine. Amino Acids 41(2):257–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Linhartova I, Bumba L, Masin J et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludden PW (1994) Reversible ADP-ribosylation as a mechanism of enzyme regulation in prokaryotes. Mol Cell Biochem 138(1–2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Merrick CJ, Duraisingh MT (2007) Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity. Eukaryot Cell 6(11):2081–2091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakano T, Matsushima-Hibiya Y, Yamamoto M et al (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci U S A 103(37):13652–13657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ono T, Kasamatsu A, Oka S, Moss J (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci U S A 103(45):16687–16691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases—implications for the origin of exotoxins and their human homologues. Trends Microbiol 9(7):302–307 (discussion 308)

    Google Scholar 

  • Park UE, Olivera BM, Hughes KT, Roth JR, Hillyard DR (1989) DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol 171(4):2173–2180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM, Volkman BF (2011) Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J Biol Chem 286(41):35955–35965

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rohmer L, Kjemtrup S, Marchesini P, Dangl JL (2003) Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol Microbiol 47(6):1545–1562

    Article  PubMed  CAS  Google Scholar 

  • Ronimus RS, Morgan HW (2003) Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1(3):199–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 139(4):428–437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sala A, Calderon V, Bordes P, Genevaux P (2013) TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 18(2):129–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seman M, Adriouch S, Scheuplein F et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19(4):571–582

    Article  PubMed  CAS  Google Scholar 

  • Shniffer A, Visschedyk DD, Ravulapalli R et al (2012) Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila. J Biol Chem 287(44):37030–37041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singer AU, Desveaux D, Betts L et al (2004) Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis. Structure 12(9):1669–1681

    Article  PubMed  CAS  Google Scholar 

  • Slade D, Dunstan MS, Barkauskaite E et al (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith CL, Ghosh J, Elam JS, Pinkner JS, Hultgren SJ, Caparon MG, Ellenberger T (2011) Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19(2):192–202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith JA, Stocken LA (1974) Chemical and metabolic properties of adenosine diphosphate ribose derivatives of nuclear proteins. Biochem J 147:523–529

    Google Scholar 

  • Smith JS, Avalos J, Celic I, Muhammad S, Wolberger C, Boeke JD (2002) SIR2 family of NAD(+)-dependent protein deacetylases. Methods Enzymol 353:282–300

    Article  PubMed  CAS  Google Scholar 

  • Snyder AK, Rio RV (2013) Interwoven biology of the tsetse holobiont. J Bacteriol 195(19):4322–4330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248

    Google Scholar 

  • Sorci L, Kurnasov OV, Rodionov DA, Osterman A (2010) Genomics and enzymology of NAD biosynthesis. In: Mander LN, Lui HW (eds) Comprehensive natural products II : chemistry and biology, vol 7. Elsevier, Amsterdam, pp 213–257

    Google Scholar 

  • Spinelli SL, Kierzek R, Turner DH, Phizicky EM (1999) Transient ADP-ribosylation of a 2′-phosphate implicated in its removal from ligated tRNA during splicing in yeast. J Biol Chem 274(5):2637–2644

    Article  PubMed  CAS  Google Scholar 

  • Stabb EV, Reich KA, Ruby EG (2001) Vibrio fischeri genes hvnA and hvnB encode secreted NAD(+)-glycohydrolases. J Bacteriol 183(1):309–317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sugimura T, Miwa M (1994) Poly(ADP-ribose): historical perspective. Mol Cell Biochem 138(1–2):5–12

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Nakaguchi A, Matsumoto Y, Yamamoto M, Iwabuchi K, Totsuka Y, Sugimura T, Wakabayashi K (2013) Demonstration of cytotoxicity against wasps by pierisin-1: a possible defense factor in the cabbage white butterfly. PLoS One 8(4):e60539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiemann B, Depping R, Gineikiene E, Kaliniene L, Nivinskas R, Ruger W (2004) ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 186(21):7262–7272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2003) Antibiotics : actions, origins, resistance. ASM Press, Washington, D.C.

    Book  Google Scholar 

  • Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25(1):64–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu Q, Kozbial P, McMullan D et al (2008) Crystal structure of an ADP-ribosylated protein with a cytidine deaminase-like fold, but unknown function (TM1506), from Thermotoga maritima at 2.70 A resolution. Proteins 71(3):1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7:18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66(5):1192–1206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work by the authors is supported by the Intramural Research Program of the National Library of Medicine, the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Aravind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aravind, L., Zhang, D., de Souza, R.F., Anand, S., Iyer, L.M. (2014). The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System. In: Koch-Nolte, F. (eds) Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, vol 384. Springer, Cham. https://doi.org/10.1007/82_2014_414

Download citation

Publish with us

Policies and ethics