The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System

  • L. AravindEmail author
  • Dapeng Zhang
  • Robson F. de Souza
  • Swadha Anand
  • Lakshminarayan M. Iyer
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 384)


Catalysis of NAD+-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin–antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.


Active Site Residue Lateral Transfer Nicotinic Acid Adenine Dinucleotide Phosphate Conflict System PARP Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work by the authors is supported by the Intramural Research Program of the National Library of Medicine, the National Institutes of Health, USA.


  1. Adriouch S, Ohlrogge W, Haag F, Koch-Nolte F, Seman M (2001) Rapid induction of naive T cell apoptosis by ecto-nicotinamide adenine dinucleotide: requirement for mono(ADP-ribosyl)transferase 2 and a downstream effector. J Immunol 167(1):196–203PubMedCrossRefGoogle Scholar
  2. Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L (2012) Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol Cell Proteomics 11(6):M111 014233Google Scholar
  3. Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 37(11):3723–3738PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anantharaman V, Iyer LM, Aravind L (2012) Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Mol Biosyst 8(12):3142–3165PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36(Database issue):D419–D425Google Scholar
  6. Aravind L (2000) Guilt by association: contextual information in genome analysis. Genome Res 10(8):1074–1077PubMedCrossRefGoogle Scholar
  7. Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM (2012) Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2:89PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baysarowich J, Koteva K, Hughes DW et al (2008) Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci U S A 105(12):4886–4891PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bazan JF, Koch-Nolte F (1997) Sequence and structural links between distant ADP-ribosyltransferase families. Adv Exp Med Biol 419:99–107PubMedCrossRefGoogle Scholar
  10. Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19PubMedCrossRefGoogle Scholar
  11. Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. W.H. Freeman, New YorkGoogle Scholar
  12. Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 82:91–118PubMedCrossRefGoogle Scholar
  13. Burroughs AM, Ando Y, Aravind L (2013) New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Wiley Interdiscip Rev RNA 5(2):141–181Google Scholar
  14. Carpusca I, Jank T, Aktories K (2006) Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. Mol Microbiol 62(3):621–630PubMedCrossRefGoogle Scholar
  15. Chambon P, Weil J, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43PubMedCrossRefGoogle Scholar
  16. Citarelli M, Teotia S, Lamb RS (2010) Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 10:308PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cohen-Armon M, Visochek L, Katzoff A et al (2004) Long-term memory requires polyADP-ribosylation. Science 304(5678):1820–1822PubMedCrossRefGoogle Scholar
  18. Collier R, Pappenheimer A (1964) Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J Exp Med 120:1019–1039PubMedCrossRefPubMedCentralGoogle Scholar
  19. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22(9):1953–1958PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dassa B, Yanai I, Pietrokovski S (2004) New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet 20(11):538–542PubMedCrossRefGoogle Scholar
  21. de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol Biosyst 8(6):1661–1677PubMedCrossRefGoogle Scholar
  22. Dunigan DD, Cerny RL, Bauman AT et al (2012) Paramecium bursaria chlorella virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J Virol 86(16):8821–8834PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fieldhouse RJ, Turgeon Z, White D, Merrill AR (2010) Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases. PLoS Comput Biol 6(12):e1001029PubMedCrossRefPubMedCentralGoogle Scholar
  24. Finn RD, Mistry J, Tate J, et al (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222Google Scholar
  25. Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260(1):273–279PubMedCrossRefGoogle Scholar
  26. Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447(7142):284–288PubMedCrossRefGoogle Scholar
  27. Garcia-Salcedo JA, Gijon P, Nolan DP, Tebabi P, Pays E (2003) A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO J 22(21):5851–5862PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C (2009) Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev 73(3):529–541 (Table of Contents)Google Scholar
  29. Glowacki G, Braren R, Firner K et al (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 11(7):1657–1670PubMedCrossRefPubMedCentralGoogle Scholar
  30. Guse AH, Lee HC (2008) NAADP: a universal Ca2+ trigger. Sci Signal 1(44):re10Google Scholar
  31. Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954PubMedCrossRefGoogle Scholar
  32. Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6(10):932–936PubMedCrossRefGoogle Scholar
  33. Harding HP, Lackey JG, Hsu HC et al (2008) An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA 14(2):225–232PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hawse WF, Wolberger C (2009) Structure-based mechanism of ADP-ribosylation by sirtuins. J Biol Chem 284(48):33654–33661PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hofmann A, Zdanov A, Genschik P, Ruvinov S, Filipowicz W, Wlodawer A (2000) Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction. EMBO J 19(22):6207–6217PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219PubMedCrossRefGoogle Scholar
  38. Iyer LM, Makarova KS, Koonin EV, Aravind L (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32(17):5260–5279PubMedCrossRefPubMedCentralGoogle Scholar
  39. Iyer LM, Anantharaman V, Wolf MY, Aravind L (2008) Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38(1):1–31PubMedCrossRefGoogle Scholar
  40. Iyer LM, Zhang D, Rogozin IB, Aravind L (2011) Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res 39(22):9473–9497PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jiang H, Khan S, Wang Y et al (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443):110–113PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jiang J, Zhang YB, Li S, Yu FF, Sun F, Gui JF (2009) Expression regulation and functional characterization of a novel interferon inducible gene Gig2 and its promoter. Mol Immunol 46(15):3131–3140PubMedCrossRefGoogle Scholar
  43. Jorgensen R, Wang Y, Visschedyk D, Merrill AR (2008a) The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9(8):802–809PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jorgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR (2008b) Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283(16):10671–10678PubMedCrossRefGoogle Scholar
  45. Karras GI, Kustatscher G, Buhecha HR et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kleine H, Poreba E, Lesniewicz K et al (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69PubMedCrossRefGoogle Scholar
  47. Koch-Nolte F, Reche P, Haag F, Bazan F (2001) ADP-ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. J Biotechnol 92(2):81–87PubMedCrossRefGoogle Scholar
  48. Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729PubMedCrossRefGoogle Scholar
  49. Koch T, Ruger W (1994) The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203(2):294–298PubMedCrossRefGoogle Scholar
  50. Krasnov A, Timmerhaus G, Schiotz BL et al (2011) Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Mol Immunol 49(1–2):163–174PubMedCrossRefGoogle Scholar
  51. Laing S, Unger M, Koch-Nolte F, Haag F (2011) ADP-ribosylation of arginine. Amino Acids 41(2):257–269PubMedCrossRefPubMedCentralGoogle Scholar
  52. Linhartova I, Bumba L, Masin J et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112PubMedPubMedCentralGoogle Scholar
  53. Ludden PW (1994) Reversible ADP-ribosylation as a mechanism of enzyme regulation in prokaryotes. Mol Cell Biochem 138(1–2):123–129PubMedCrossRefGoogle Scholar
  54. Merrick CJ, Duraisingh MT (2007) Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity. Eukaryot Cell 6(11):2081–2091PubMedCrossRefPubMedCentralGoogle Scholar
  55. Nakano T, Matsushima-Hibiya Y, Yamamoto M et al (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci U S A 103(37):13652–13657PubMedCrossRefPubMedCentralGoogle Scholar
  56. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ono T, Kasamatsu A, Oka S, Moss J (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci U S A 103(45):16687–16691PubMedCrossRefPubMedCentralGoogle Scholar
  58. Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases—implications for the origin of exotoxins and their human homologues. Trends Microbiol 9(7):302–307 (discussion 308)Google Scholar
  60. Park UE, Olivera BM, Hughes KT, Roth JR, Hillyard DR (1989) DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol 171(4):2173–2180PubMedPubMedCentralGoogle Scholar
  61. Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM, Volkman BF (2011) Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J Biol Chem 286(41):35955–35965PubMedCrossRefPubMedCentralGoogle Scholar
  62. Price MN, Dehal PS, Arkin AP (2010) FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171PubMedCrossRefPubMedCentralGoogle Scholar
  64. Rohmer L, Kjemtrup S, Marchesini P, Dangl JL (2003) Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol Microbiol 47(6):1545–1562PubMedCrossRefGoogle Scholar
  65. Ronimus RS, Morgan HW (2003) Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1(3):199–221PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 139(4):428–437PubMedCrossRefPubMedCentralGoogle Scholar
  67. Sala A, Calderon V, Bordes P, Genevaux P (2013) TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 18(2):129–135PubMedCrossRefPubMedCentralGoogle Scholar
  68. Schaffer AA, Aravind L, Madden TL et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005PubMedCrossRefPubMedCentralGoogle Scholar
  69. Seman M, Adriouch S, Scheuplein F et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19(4):571–582PubMedCrossRefGoogle Scholar
  70. Shniffer A, Visschedyk DD, Ravulapalli R et al (2012) Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila. J Biol Chem 287(44):37030–37041PubMedCrossRefPubMedCentralGoogle Scholar
  71. Singer AU, Desveaux D, Betts L et al (2004) Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis. Structure 12(9):1669–1681PubMedCrossRefGoogle Scholar
  72. Slade D, Dunstan MS, Barkauskaite E et al (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620PubMedCrossRefPubMedCentralGoogle Scholar
  73. Smith CL, Ghosh J, Elam JS, Pinkner JS, Hultgren SJ, Caparon MG, Ellenberger T (2011) Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19(2):192–202PubMedCrossRefPubMedCentralGoogle Scholar
  74. Smith JA, Stocken LA (1974) Chemical and metabolic properties of adenosine diphosphate ribose derivatives of nuclear proteins. Biochem J 147:523–529Google Scholar
  75. Smith JS, Avalos J, Celic I, Muhammad S, Wolberger C, Boeke JD (2002) SIR2 family of NAD(+)-dependent protein deacetylases. Methods Enzymol 353:282–300PubMedCrossRefGoogle Scholar
  76. Snyder AK, Rio RV (2013) Interwoven biology of the tsetse holobiont. J Bacteriol 195(19):4322–4330PubMedCrossRefPubMedCentralGoogle Scholar
  77. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248Google Scholar
  78. Sorci L, Kurnasov OV, Rodionov DA, Osterman A (2010) Genomics and enzymology of NAD biosynthesis. In: Mander LN, Lui HW (eds) Comprehensive natural products II : chemistry and biology, vol 7. Elsevier, Amsterdam, pp 213–257Google Scholar
  79. Spinelli SL, Kierzek R, Turner DH, Phizicky EM (1999) Transient ADP-ribosylation of a 2′-phosphate implicated in its removal from ligated tRNA during splicing in yeast. J Biol Chem 274(5):2637–2644PubMedCrossRefGoogle Scholar
  80. Stabb EV, Reich KA, Ruby EG (2001) Vibrio fischeri genes hvnA and hvnB encode secreted NAD(+)-glycohydrolases. J Bacteriol 183(1):309–317PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sugimura T, Miwa M (1994) Poly(ADP-ribose): historical perspective. Mol Cell Biochem 138(1–2):5–12PubMedCrossRefGoogle Scholar
  82. Takahashi-Nakaguchi A, Matsumoto Y, Yamamoto M, Iwabuchi K, Totsuka Y, Sugimura T, Wakabayashi K (2013) Demonstration of cytotoxicity against wasps by pierisin-1: a possible defense factor in the cabbage white butterfly. PLoS One 8(4):e60539PubMedCrossRefPubMedCentralGoogle Scholar
  83. Tiemann B, Depping R, Gineikiene E, Kaliniene L, Nivinskas R, Ruger W (2004) ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 186(21):7262–7272PubMedCrossRefPubMedCentralGoogle Scholar
  84. Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929PubMedCrossRefGoogle Scholar
  85. Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100PubMedCrossRefGoogle Scholar
  86. Walsh C (2003) Antibiotics : actions, origins, resistance. ASM Press, Washington, D.C.CrossRefGoogle Scholar
  87. Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25(1):64–76PubMedCrossRefPubMedCentralGoogle Scholar
  88. Xu Q, Kozbial P, McMullan D et al (2008) Crystal structure of an ADP-ribosylated protein with a cytidine deaminase-like fold, but unknown function (TM1506), from Thermotoga maritima at 2.70 A resolution. Proteins 71(3):1546–1552PubMedCrossRefGoogle Scholar
  89. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7:18PubMedCrossRefPubMedCentralGoogle Scholar
  90. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66(5):1192–1206PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • L. Aravind
    • 1
    Email author
  • Dapeng Zhang
    • 1
  • Robson F. de Souza
    • 2
  • Swadha Anand
    • 1
  • Lakshminarayan M. Iyer
    • 1
  1. 1.National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaUSA
  2. 2.Microbiology DepartmentBiomedical Sciences Institute, University of Sao PauloSão PauloBrazil

Personalised recommendations