Skip to main content

The Role of Cytokine Responses During Influenza Virus Pathogenesis and Potential Therapeutic Options

  • Chapter
  • First Online:
Influenza Pathogenesis and Control - Volume II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 386))

Abstract

Aberrant pulmonary immune responses are linked to the pathogenesis of multiple human respiratory viral infections. Elevated cytokine and chemokine production “cytokine storm” has been continuously associated with poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models. Initial trials using global immune suppression with corticosteroids or targeted neutralization of single inflammatory mediators proved ineffective to ameliorate pathology during pathogenic influenza virus infection. Thus, it was believed that cytokine storm was either chemically intractable or not causal in the pathology observed. During this review, we will discuss the history of research assessing the roles various cytokines, chemokines, and innate immune cells play in promoting pathology or protection during influenza virus infection. Several promising new strategies modulating lipid signaling have been recently uncovered for global blunting, but not ablation, of innate immune responses following influenza virus infection. Importantly, modulating lipid signaling through various means has proven effective at curbing morbidity and mortality in animal models and may be useful for curbing influenza virus induced pathology in humans. Finally, we highlight future research directions for mechanistically dissecting how modulation of lipid signaling pathways results in favorable outcomes following influenza virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed R, Oldstone MB, Palese P (2007) Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat Immunol 8:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Aldridge JR Jr, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C, Franks J, Brown SA, Doherty PC, Webster RG, Thomas PG (2009) TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Nat Acad Sci U.S.A 106:5306–5311

    Article  CAS  Google Scholar 

  • Arankalle VA, Lole KS, Arya RP, Tripathy AS, Ramdasi AY, Chadha MS, Sangle SA, Kadam DB (2010) Role of host immune response and viral load in the differential outcome of pandemic H1N1 (2009) influenza virus infection in Indian patients. PLoS ONE 5(10):e13099

    Google Scholar 

  • Baumgarth N, Kelso A (1996) In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol 70:4411–4418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bot A, Bot S, Bona CA (1998) Protective role of gamma interferon during the recall response to influenza virus. J Virol 72:6637–6645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandes M, Klauschen F, Kuchen S, Germain RN (2013) A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell 154:197–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brun-Buisson C, Richard JC, Mercat A, Thiebaut AC, Brochard L, REVA-SRLF A/H1N1v 2009 Registry Group (2011) Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med 183:1200–1206

    Article  PubMed  Google Scholar 

  • Cahalan SM, Gonzalez-Cabrera PJ, Nguyen N, Guerrero M, Cisar EA, Leaf NB, Brown SJ, Roberts E, Rosen H (2013) Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist. Mol Pharmacol 83:316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahalan SM, Gonzalez-Cabrera PJ, Sarkisyan G, Nguyen N, Schaeffer MT, Huang L, Yeager A, Clemons B, Scott F, Rosen H (2011) Actions of a picomolar short-acting S1P(1) agonist in S1P(1)-eGFP knock-in mice. Nat Chem Biol 7:254–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, Ran R, Danesh A, Fang Y, Chan PK et al (2008) Gene expression analysis of host innate immune responses during lethal H5N1 infection in ferrets. J Virol 82:11308–11317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carey MA, Bradbury JA, Rebolloso YD, Graves JP, Zeldin DC, Germolec DR (2010) Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice. PLoS ONE 5:e11610

    Article  PubMed Central  PubMed  Google Scholar 

  • Carey MA, Bradbury JA, Seubert JM, Langenbach R, Zeldin DC, Germolec DR (2005) Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol 175:6878–6884

    Article  CAS  PubMed  Google Scholar 

  • Carlson CM, Turpin EA, Moser LA, O’Brien KB, Cline TD, Jones JC, Tumpey TM, Katz JM, Kelley LA, Gauldie J et al (2010) Transforming growth factor-beta: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog 6:e1001136

    Article  PubMed Central  PubMed  Google Scholar 

  • Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  CAS  PubMed  Google Scholar 

  • Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS (2002) Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Cilloniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, Carter VS, Chang JH, Kobasa D, Feldmann F et al (2009) Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog 5:e1000604

    Article  PubMed Central  PubMed  Google Scholar 

  • Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180:5771–5777

    Article  CAS  PubMed  Google Scholar 

  • Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, Albert ML, Staeheli P, Wack A (2013) Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog 9:e1003773

    Article  PubMed Central  PubMed  Google Scholar 

  • Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Ann Rev Immunol 23:127–159

    Article  CAS  Google Scholar 

  • Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156:1951–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC et al (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207

    Article  PubMed  Google Scholar 

  • Dienz O, Rud JG, Eaton SM, Lanthier PA, Burg E, Drew A, Bunn J, Suratt BT, Haynes L, Rincon M (2012) Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol 5:258–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fadel SA, Bromley SK, Medoff BD, Luster AD (2008) CXCR3-deficiency protects influenza-infected CCR5-deficient mice from mortality. Eur J Immunol 38:3376–3387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Sastre A (2010) Influenza virus receptor specificity: disease and transmission. Am J Pathol 176:1584–1585

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879–882

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Cabrera PJ, Jo E, Sanna MG, Brown S, Leaf N, Marsolais D, Schaeffer MT, Chapman J, Cameron M, Guerrero M et al (2008) Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-like headgroup interactions. Mol Pharmacol 74:1308–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376

    Article  CAS  PubMed  Google Scholar 

  • Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE (1998) Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest 101:643–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hermesh T, Moltedo B, Moran TM, Lopez CB (2010) Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe 7:343–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussell T, Pennycook A, Openshaw PJ (2001) Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur J Immunol 31:2566–2573

    Article  CAS  PubMed  Google Scholar 

  • Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A (2009) Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206:79–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichinohe T, Pang IK, Iwasaki A (2010) Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Im DS (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol Sin 31:1213–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–249

    Article  CAS  PubMed  Google Scholar 

  • Jewell NA, Cline T, Mertz SE, Smirnov SV, Flano E, Schindler C, Grieves JL, Durbin RK, Kotenko SV, Durbin JE (2010) Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 84:11515–11522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single amino acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser L, Fritz RS, Straus SE, Gubareva L, Hayden FG (2001) Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol 64:262–268

    Article  CAS  PubMed  Google Scholar 

  • Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF et al (2013) PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 123:206–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khoufache K, LeBouder F, Morello E, Laurent F, Riffault S, Andrade-Gordon P, Boullier S, Rousset P, Vergnolle N, Riteau B (2009) Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-gamma-dependent pathway. J Immunol 182:7795–7802

    Article  CAS  PubMed  Google Scholar 

  • Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445:319–323

    Article  CAS  PubMed  Google Scholar 

  • Kochs G, Garcia-Sastre A, Martinez-Sobrido L (2007) Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 81:7011–7021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • La Gruta NL, Kedzierska K, Stambas J, Doherty PC (2007) A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 85:85–92

    Article  PubMed  Google Scholar 

  • Lambrecht BN, Hammad H (2012) Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Ann Rev Immunol 30:243–270

    Article  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Ann Rev Immunol 24:99–146

    Article  CAS  Google Scholar 

  • Macneil A, Nichol ST, Spiropoulou CF (2011) Hantavirus pulmonary syndrome. Virus Res 162:138–147

    Article  CAS  PubMed  Google Scholar 

  • Maelfait J, Roose K, Bogaert P, Sze M, Saelens X, Pasparakis M, Carpentier I, van Loo G, Beyaert R (2012) A20 (Tnfaip3) deficiency in myeloid cells protects against influenza A virus infection. PLoS Pathog 8:e1002570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsolais D, Hahm B, Edelmann KH, Walsh KB, Guerrero M, Hatta Y, Kawaoka Y, Roberts E, Oldstone MB, Rosen H (2008) Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza. Mol Pharmacol 74:896–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsolais D, Hahm B, Walsh KB, Edelmann KH, McGavern D, Hatta Y, Kawaoka Y, Rosen H, Oldstone MB (2009) A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Nat Acad Sci U.S.A. 106:1560–1565

    Article  CAS  Google Scholar 

  • Marsolais D, Rosen H (2009) Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat Rev Drug Discov 8:297–307

    Article  CAS  PubMed  Google Scholar 

  • McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW et al (2009) IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol 182:7353–7363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, Swain SL (2012) Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 122:2847–2856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S et al (2013) The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153:112–125

    Article  CAS  PubMed  Google Scholar 

  • Mahlakõiv T, Ritz D, Mordstein M, DeDiego ML, Enjuanes L, Müller MA, Drosten C, Staeheli P et al (2012) Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread. J Gen Virol 2601-2605 doi:10.1099/vir.0.046284-0

  • Nguyen HH, van Ginkel FW, Vu HL, Novak MJ, McGhee JR, Mestecky J (2000) Gamma interferon is not required for mucosal cytotoxic T-lymphocyte responses or heterosubtypic immunity to influenza A virus infection in mice. J Virol 74:5495–5501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nhu QM, Shirey K, Teijaro JR, Farber DL, Netzel-Arnett S, Antalis TM, Fasano A, Vogel SN (2010) Novel signaling interactions between proteinase-activated receptor 2 and toll-like receptors in vitro and in vivo. Mucosal Immunol 3:29–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nhu QM, Shirey KA, Pennini ME, Stiltz J, Vogel SN (2012) Proteinase-activated receptor 2 activation promotes an anti-inflammatory and alternatively activated phenotype in LPS-stimulated murine macrophages. Innate Immun 18:193–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452:654–658

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB (2013) Lessons learned and concepts formed from study of the pathogenesis of the two negative-strand viruses lymphocytic choriomeningitis and influenza. Proc Nat Acad Sci U.S.A 110:4180–4183

    Article  CAS  Google Scholar 

  • Openshaw PJ, Dunning J (2010) Influenza vaccination: lessons learned from the pandemic (H1N1) 2009 influenza outbreak. Mucosal Immunol 3:422–424

    Article  CAS  PubMed  Google Scholar 

  • Pang IK, Pillai PS, Iwasaki A (2013) Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Nat Acad Sci U.S.A 110:13910–13915

    Article  CAS  Google Scholar 

  • Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL et al (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363:617–619

    Article  CAS  PubMed  Google Scholar 

  • Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4:e1000115

    Article  PubMed Central  PubMed  Google Scholar 

  • Perrone LA, Szretter KJ, Katz JM, Mizgerd JP, Tumpey TM (2010) Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus. J Infect Dis 202:1161–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price GE, Gaszewska-Mastarlarz A, Moskophidis D (2000) The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol 74:3996–4003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pugin J, Ricou B, Steinberg KP, Suter PM, Martin TR (1996) Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. Am J Respir Crit Care Med 153:1850–1856

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen H, Gonzalez-Cabrera P, Marsolais D, Cahalan S, Don AS, Sanna MG (2008) Modulating tone: the overture of S1P receptor immunotherapeutics. Immunol Rev 223:221–235

    Article  CAS  PubMed  Google Scholar 

  • Rosen H, Liao J (2003) Sphingosine 1-phosphate pathway therapeutics: a lipid ligand-receptor paradigm. Curr Opin Chem Biol 7:461–468

    Article  CAS  PubMed  Google Scholar 

  • Salomon R, Hoffmann E, Webster RG (2007) Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Nat Acad Sci U.S.A 104:12479–12481

    Article  Google Scholar 

  • Salomon R, Webster RG (2009) The influenza virus enigma. Cell 136:402–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79:6441–6448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz-Cherry S, Hinshaw VS (1996) Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol 70:8624–8629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo SU, Kwon HJ, Ko HJ, Byun YH, Seong BL, Uematsu S, Akira S, Kweon MN (2011) Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog 7:e1001304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM (2010) Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 43:662–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J et al (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497:498–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sprenger H, Meyer RG, Kaufmann A, Bussfeld D, Rischkowsky E, Gemsa D (1996) Selective induction of monocyte and not neutrophil-attracting chemokines after influenza A virus infection. J Exp Med 184:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y, Curtis JD, Huston G, Dutton RW, Swain SL (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16: 558–564 (1p following 564)

    Google Scholar 

  • Sun J, Madan R, Karp CL, Braciale TJ (2009) Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med 15:277–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM (2007) Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 81:2736–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tam VC, Quehenberger O, Oshansky CM, Suen R, Armando AM, Treuting PM, Thomas PG, Dennis EA, Aderem A (2013) Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell 154:213–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tate MD, Pickett DL, van Rooijen N, Brooks AG, Reading PC (2010) Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 84:7569–7580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL (2011a) Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 187:5510–5514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Verhoeven D, Page CA, Turner D, Farber DL (2010) Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 84:9217–9226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H (2011b) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Walsh KB, Long JP, Tordoff KP, Stark GV, Eisfeld AJ, Kawaoka Y, Rosen H, Oldstone MB (2014a) Protection of ferrets from pulmonary injury due to H1N1 2009 influenza virus infection: immunopathology tractable by sphingosine-1-phosphate 1 receptor agonist therapy. Virology 452–453:152–157

    Article  PubMed  Google Scholar 

  • Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MB (2014) Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Nat Acad Sci U.S.A 111(10):3799–3804

    Google Scholar 

  • Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19:121–132

    Article  CAS  PubMed  Google Scholar 

  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev (MMBR) 76:16–32

    Article  CAS  Google Scholar 

  • Tscherne DM, Garcia-Sastre A (2011) Virulence determinants of pandemic influenza viruses. J Clin Invest 121:6–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solorzano A, van Rooijen N, Katz JM et al (2005) Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79:14933–14944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Reeth K (2000) Cytokines in the pathogenesis of influenza. Vet Microbiol 74:109–116

    Article  PubMed  Google Scholar 

  • Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM, Das SC, Watanabe T, Hatta M, Shinya K, Suresh M et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Nat Acad Sci U.S.A 108:12018–12023

    Article  CAS  Google Scholar 

  • Weiss ID, Wald O, Wald H, Beider K, Abraham M, Galun E, Nagler A, Peled A (2010) IFN-gamma treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J Interferon Cytokine Res (the official journal of the International Society for Interferon and Cytokine Research) 30:439–449

    Article  CAS  Google Scholar 

  • Wiley JA, Cerwenka A, Harkema JR, Dutton RW, Harmsen AG (2001) Production of interferon-gamma by influenza hemagglutinin-specific CD8 effector T cells influences the development of pulmonary immunopathology. Am J Pathol 158:119–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, Zhang HJ, Chen HL, Wong SS, Lau SK, Woo PC et al (2008) Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Nat Acad Sci U.S.A 105:8091–8096

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Teijaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teijaro, J.R. (2014). The Role of Cytokine Responses During Influenza Virus Pathogenesis and Potential Therapeutic Options. In: Oldstone, M., Compans, R. (eds) Influenza Pathogenesis and Control - Volume II. Current Topics in Microbiology and Immunology, vol 386. Springer, Cham. https://doi.org/10.1007/82_2014_411

Download citation

Publish with us

Policies and ethics