Skip to main content

Swine and Influenza: A Challenge to One Health Research

  • Chapter
  • First Online:
Influenza Pathogenesis and Control - Volume I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 385))

Abstract

The challenge of increasing swine production and a rising number of novel and known swine influenza viruses has prompted a considerable boost in research into how and why pigs have become such significant hosts for influenza viruses. The ecology of influenza A viruses is rather complicated, involving multiple host species and a segmented genome. Wild aquatic birds are the reservoir for the majority of influenza A viruses, but novel influenza viruses were recently identified in bats. Occasionally, influenza A viruses can be transmitted to mammals from avian species and this event could lead to the generation of human pandemic strains. Swine are thought to be “mixing vessels ” because they are susceptible to infection with both avian and mammalian influenza viruses; and novel influenza viruses can be generated in pigs by reassortment . At present, it is difficult to predict which viruses might cause a human pandemic . Therefore, both human and veterinary research needs to give more attention to the potential cross-species transmission capacity of influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baum LG, Paulson JC (1990) Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 40:35–38

    CAS  PubMed  Google Scholar 

  • Bowman AS, Workman JD, Nolting JM, Nelson SW, Siemons RD (2014) Exploration of risk factors contributing to the presence of influenza virus in swine at agricultural fairs. Emerg Microbes Infect 3:e5

    Article  PubMed Central  Google Scholar 

  • Brown IH (2000) The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol 74:29–46

    Article  CAS  PubMed  Google Scholar 

  • Brown IH (2013) History and epidemiology of swine influenza in Europe. Cur Top Microbiol Immunol 370:133–146

    Google Scholar 

  • Choi YK, Nguyen TD, Ozaki H, Webby RJ, Puthavathana P, Buranathal C, Chaisingh A, Auewarakul P, Hanh NT, Ma SK, Hui PY, Guan Y, Peiris JS, Webster RG (2005) Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol 79:10821–10825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coker R, Rushton J, Mounier-Jack S, Karimuribo E, Lutumba P, Kambarage D, Pfeiffer DU, Stark K, Rweyemamu M (2011) Towards a conceptual framework to support one-health research for policy on emerging zoonoses. Lancet Infect Dis 11:326–331

    Article  PubMed  Google Scholar 

  • de Jong MC, Stegeman A, van der Goot J, Koch G (2009) Intra- and interspecies transmission of H7N7 highly pathogenic avian influenza virus during the avian influenza epidemic in the Netherlands in 2003. Rev Sci Tech 28:333–340

    PubMed  Google Scholar 

  • Delgado C, Rosegrant M, Steinfeld H, Ehui S, Courbois C (1999) Livestock to 2020. The next food revolution. Food, agriculture and the environment. Discussion paper 28. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Ducatez MF, Hause B, Stigger-Rosser E, Darnell D, Corzo C, Juleen K, Simonson R, Brockwell-Staats C, Rubrum A, Wang D, Webb A, Crumpton JC, Lowe J, Gramer M, Webby RJ (2011) Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs, United States. Emerg Infect Dis 17:1624–1629

    Article  PubMed  PubMed Central  Google Scholar 

  • Epperson S, Jhung M, Richards S, Quinlisk P, Ball L, Moll M, Boulton R, Haddy L, Biggerstaff M, Brammer L, Trock S, Burns E, Gomez T, Wong KK, Katz J, Lindstrom S, Klimov A, Bresee JS, Jernigan DB, Cox N, Finelli L (2013) Human infections with influenza A(H3N2) variant virus in the United States, 2011–2012. Clin Infect Dis 57(Suppl 1):S4–S11

    Article  CAS  PubMed  Google Scholar 

  • Gaydos JC, Hodder RA, Top FH Jr, Allen RG, Soden VJ, Nowosiwsky T, Russell PK (1977a) Swine influenza A at Fort Dix, New Jersey (January–February 1976). II. Transmission and morbidity in units with cases. J Infect Dis 136(Suppl):S363–S368

    Google Scholar 

  • Gaydos JC, Hodder RA, Top FH Jr, Soden VJ, Allen RG, Bartley JD, Zabkar JH, Nowosiwsky T, Russell PK (1977b) Swine influenza A at Fort Dix, New Jersey (January–February 1976). I. Case finding and clinical study of cases. J Infect Dis 136(Suppl):S356–S362

    Google Scholar 

  • Gaydos JC, Top FH Jr, Hodder RA, Russell PK (2006) Swine influenza A outbreak, Fort Dix, New Jersey, 1976. Emerg Infect Dis 12:23–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodder RA, Gaydos JC, Allen RG, Top FH Jr, Nowosiwsky T, Russell PK (1977) Swine influenza A at Fort Dix, New Jersey (January–February 1976). III. Extent of spread and duration of the outbreak. J Infect Dis 136(Suppl):S369–S375

    Google Scholar 

  • Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y (1997) Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, Neumann G, Saito T, Kawaoka Y, Tashiro M (2013) Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill 18:20453

    CAS  PubMed  Google Scholar 

  • Keenliside J (2013) Pandemic influenza A H1N1 in Swine and other animals. Curr Top Microbiol Immunol 370:259–271

    PubMed  Google Scholar 

  • Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C, Shortridge KF, Kawaoka Y, Webster RG (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75:2183–2188

    Article  PubMed  Google Scholar 

  • Kimble B, Nieto GR, Perez DR (2010) Characterization of influenza virus sialic acid receptors in minor poultry species. Virol J 7:365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleanthous A (2009) Pigs and the environment. Here Tomorrow/BPEX, London

    Google Scholar 

  • Kluska V, Macku M, Mensik J (1961) Demonstration of antibodies against swine influenza viruses inman. Cesk Pediatr 16:408–414

    CAS  PubMed  Google Scholar 

  • Komadina N, McVernon J, Hall R, Leder K (2014) A historical perspective of influenza A(H1N2) virus. Emerg Infect Dis 20:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor SP, Obenauer JC, Naeve CW, Widjaja L, Webby RJ, Webster RG (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3:e167

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger WS, Gray GC (2013) Swine influenza virus infections in man. Curr Top Microbiol Immunol 370:201–225

    PubMed  Google Scholar 

  • Lipatov AS, Kwon YK, Sarmento LV, Lager KM, Spackman E, Suarez DL, Swayne DE (2008) Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PLoS Pathog 4:e1000102

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wei M-T, Tong Y, Tang F, Zhang L, Fang L, Yang H, Cao W-C (2011) Seroprevalence and genetic characteristics of five subtypes of influenza A viruses in the Chinese pig population: a pooled data analysis. Vet J 187:200–206

    Article  PubMed  Google Scholar 

  • Liu Q, Ma J, Liu H, Qi W, Anderson J, Henry SC, Hesse RA, Richt JA, Ma W (2012) Emergence of novel reassortant H3N2 swine influenza viruses with the 2009 pandemic H1N1 genes in the United States. Arch Virol 157:555–562

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J, Liu W, Zhao G, Yang W, Wang Y, Ma J, Shu Y, Lei F, Gao GF (2013) Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381:1926–1932

    Article  PubMed  Google Scholar 

  • Liu Q, Bin Z, Ma W, Bawa B, Ma J, Wang W, Lang Y, Lyoo Y, Halpin RA, Lin X, Stockwell TB, Webby RJ, Wentworth D, Richt JA (2014) Analysis of recombinant H7N9 wild type and mutant viruses in pigs shows Q226L in HA is important for transmission. J Virol 88(14):8153–8165

    Google Scholar 

  • Lymbery P, Oakeshott I (2014) Farmageddon: the true cost of cheap meat. Bloomsbury, London

    Google Scholar 

  • Ma W, Vincent AL, Gramer MR, Brockwell CB, Lager KM, Janke BH, Gauger PC, Patnayak DP, Webby RJ, Richt JA (2007) Identification of H2N3 influenza A viruses from swine in the United States. Proc Natl Acad Sci USA 104:20949–20954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Kahn RE, Richt JA (2009) The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med 3:158–166

    Article  CAS  PubMed Central  Google Scholar 

  • Marks JS, Halpin TJ (1980) Guillain-Barre syndrome in recipients of A/New Jersey influenza vaccine. JAMA 243:2490–2494

    Article  CAS  PubMed  Google Scholar 

  • Milinovich GJ, Williams GM, Clements ACA, Hu W (2014) Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 14:160–168

    Article  PubMed  Google Scholar 

  • Morens DM, Taubenberger JK (2014) A possible outbreak of swine influenza, 1892. Lancet Infect Dis 14:169–172

    Article  PubMed  Google Scholar 

  • Myers KP, Olsen CW, Gray GC (2007) Cases of swine influenza in humans: a review of the literature. Clin Infect Dis 44:1084–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • National Bureau of Statistics of China (2014) China’s economy showed good momentum of steady growth in the year of 2013. www.stats.gov.cn/english/pressrelease/201401/tp140120_502079.html

  • Neustadt RE, Fineberg HV (1978/2005) The swine flu affair: decision-making on a slippery disease. University Press of the Pacific, Honolulu

    Google Scholar 

  • Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12:36–44

    Article  PubMed  Google Scholar 

  • Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354:916–917

    Article  CAS  PubMed  Google Scholar 

  • Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75:9679–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao C, Liu Q, Bawa B, Shen H, Qi W, Chen Y, Mok CK, Garcia-Sastre A, Richt JA, Ma W (2012) Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. J Gen Virol 93:2337–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richt JA, Webby R (eds) (2013) Swine influenza. Curr Top Microbiol Immunol 370:1–300

    Google Scholar 

  • Richt JA, Webby R, Kahn RE (2013) The pandemic H1N1 influenza experience. In: Mackenzie JS, Jeggo M, Daszak PS, Richt JA (eds) One health: the human–animal-environment interfaces in emerging infectious disease: the concept and examples of a one health approach. Current topics in microbiology and immunology, vol 365, pp 269–280

    Google Scholar 

  • Rogers GN, D’Souza BL (1989) Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173:317–322

    Article  CAS  PubMed  Google Scholar 

  • Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    Article  CAS  PubMed  Google Scholar 

  • Scholtissek C, Burger H, Kistner O, Shortridge KF (1985) The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147:287–294

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen EJA, Fouchier RAM (2014) Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect 3:e9

    Article  PubMed Central  Google Scholar 

  • Sencer DJ, Millar JD (2006) Reflections on the 1976 swine flu vaccination program. Emerg Infect Dis 12:29–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436

    Article  CAS  PubMed  Google Scholar 

  • Silverstein AM (1981) Pure politics and impure science: the swine flu affair. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, Van Kerkhove MD, Mounts AW, Paget WJ (2013) Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project: a modeling study. PLoS Med 10:e1001558

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith TF, Burgert EO Jr, Dowdle WR, Noble GR, Campbell RJ, Van Scoy RE (1976) Isolation of swine influenza virus from autopsy lung tissue of man. N Engl J Med 294:708–710

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Horiike G, Yamazaki Y, Kawabe K, Masuda H, Miyamoto D, Matsuda M, Nishimura SI, Yamagata T, Ito T, Kida H, Kawaoka Y, Suzuki Y (1997) Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Lett 404:192–196

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Ito T, Suzuki T, Holland RE Jr, Chambers TM, Kiso M, Ishida H, Kawaoka Y (2000) Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109:4269–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657

    Article  PubMed  PubMed Central  Google Scholar 

  • Top FH Jr, Russell PK (1977) Swine influenza A at Fort Dix, New Jersey (January–February 1976). IV. Summary and speculation. J Infect Dis 136(Suppl):S376–S380

    Google Scholar 

  • Vincent AL, Ma W, Lager KM, Janke BH, Richt JA (2008) Swine influenza viruses a North American perspective. Adv Virus Res 72:127–154

    Article  CAS  PubMed  Google Scholar 

  • Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, Donis R, Culhane M, Hamilton K, Lewis N, Mumford E, Nguyen T, Parchariyanon S, Pasick J, Pavade G, Pereda A, Peiris F (2014) Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 61:4–17

    Google Scholar 

  • Wan H, Perez DR (2006) Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346:278–286

    Article  CAS  PubMed  Google Scholar 

  • Weis T (2013) The ecological hoofprint: the global burden of industrial livestock. Zed Books, London

    Google Scholar 

  • Worldometers (2014) World population. www.worldometers.info/world-population/

  • Wu Y, Tefsen B, Shi Y, Gao GF (2014) Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22:183–191

    Article  CAS  PubMed  Google Scholar 

  • Yassine HM, Al-Natour MQ, Lee CW, Saif YM (2007) Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses. Virol J 4:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Kong W, Qi W, Long LP, Cao Z, Huang L, Qi H, Cao N, Wang W, Zhao F, Ning Z, Liao M, Wan XF (2011) Identification of an H6N6 swine influenza virus in southern China. Infect Genet Evol 11:1174–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Chen C, Huang J, Wang Y, Peng D, Liu X (2013) Characterisation of one H6N6 influenza virus isolated from swine in China. Res Vet Sci 95:434–436

    Article  CAS  PubMed  Google Scholar 

  • Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon K, Krauss S, Webster RG (1999) Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 73:8851–8856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Webby R, Lam TT, Smith DK, Peiris JS, Guan Y (2013) History of swine influenza viruses in Asia. Curr Top Microbiol Imunol 370:57–68

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the U.S. Department of Homeland Security under Grant Award Number 2010-ST-AG0001 to CEEZAD, the Kansas Bioscience Authority and NIH grant HHSN266200700005C. We also would like to thank Mal Hoover for her excellent work on the figures and Jessica Green for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen A. Richt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kahn, R.E., Ma, W., Richt, J.A. (2014). Swine and Influenza: A Challenge to One Health Research. In: Compans, R., Oldstone, M. (eds) Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, vol 385. Springer, Cham. https://doi.org/10.1007/82_2014_392

Download citation

Publish with us

Policies and ethics