Advertisement

Photorhabdus luminescens Toxins TccC3 and TccC5: Insecticidal ADP-Ribosyltransferases that Modify Threonine and Glutamine

  • Klaus Aktories
  • Gudula Schmidt
  • Alexander E. Lang
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 384)

Abstract

The ADP-ribosyltransferases TccC3 and TccC5 are the biologically active TcC components of the tripartite Photorhabdus luminescens Tc toxin, which consist of TcA, TcB, and TcC components. TcA is the binding and membrane translocation component. TcB is a functional linker between TcC and TcA and also involved in the translocation of the toxin. While TccC3 ADP-ribosylates actin at threonine 148, TccC5 modifies Rho proteins at glutamine 61/63. Both modifications result in major alteration of the actin cytoskeleton. Here we discuss structure and function of the Tc toxin and compare its ADP-ribosyltransferase activities with other types of actin and Rho modifying toxins.

Keywords

Actin Cytoskeleton Diphtheria Toxin Yersinia Enterocolitica Stress Fiber Formation Filopodium Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG) and the Center for Biological Signaling Studies (BIOSS) in Freiburg (Germany).

References

  1. Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387PubMedCrossRefGoogle Scholar
  2. Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392PubMedCrossRefGoogle Scholar
  3. Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113PubMedCrossRefGoogle Scholar
  4. Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543PubMedCrossRefGoogle Scholar
  5. Barth H, Preiss JC, Hofmann F, Aktories K (1998) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511PubMedCrossRefGoogle Scholar
  6. Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414PubMedCrossRefGoogle Scholar
  7. Braun M, Stuber K, Schlatter Y, Wahli T, Kuhnert P, Frey J (2002) Characterization of an ADP-ribosyltransferase toxin (AexT) from Aeromonas salmonicida subsp. salmonicida. J Bacteriol 184:1851–1858PubMedCrossRefPubMedCentralGoogle Scholar
  8. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedCrossRefGoogle Scholar
  9. Busby JN, Panjikar S, Landsberg MJ, Hurst MR, Lott JS (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–550PubMedCrossRefGoogle Scholar
  10. Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook, pp 1–9Google Scholar
  12. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287PubMedCrossRefPubMedCentralGoogle Scholar
  13. Collier RJ (1968) Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol 25:83–98CrossRefGoogle Scholar
  14. de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol BioSyst 8:1661–1677PubMedCrossRefGoogle Scholar
  15. ffrench-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833PubMedCrossRefGoogle Scholar
  16. ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58:169–183PubMedCrossRefGoogle Scholar
  17. ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433–456PubMedCrossRefGoogle Scholar
  18. Fieldhouse RJ, Merrill AR (2008) Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 33:546–556PubMedCrossRefGoogle Scholar
  19. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72PubMedCrossRefGoogle Scholar
  20. Fraylick JE, Rucks EA, Greene DM, Vincent TS, Olson JC (2002) Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem Biophys Res Commun 291:91–100PubMedCrossRefGoogle Scholar
  21. Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523PubMedCrossRefGoogle Scholar
  22. Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I (2003) Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 278:28523–28527PubMedCrossRefGoogle Scholar
  23. Gill DM, Richardson SH (1980) Adenosine diphosphate-ribosylation of adenylate cyclase catalyzed by heat-labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141:64–70PubMedCrossRefGoogle Scholar
  24. Gill DM, Pappenheimer JAM, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hall A (1993) Ras-related proteins. Curr Opin Cell Biol 5:265–268PubMedCrossRefGoogle Scholar
  27. Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:31–54PubMedCrossRefGoogle Scholar
  28. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514PubMedCrossRefGoogle Scholar
  29. Han S, Tainer JA (2002) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol 291:523–529PubMedCrossRefGoogle Scholar
  30. Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936PubMedCrossRefGoogle Scholar
  31. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701PubMedCrossRefGoogle Scholar
  32. Hoffmann C, Schmidt G (2004) CNF and DNT. Rev Physiol Biochem Pharmacol 152:49–63PubMedCrossRefGoogle Scholar
  33. Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279:16026–16032PubMedCrossRefGoogle Scholar
  34. Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49PubMedCrossRefGoogle Scholar
  35. Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacryl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555PubMedGoogle Scholar
  36. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219PubMedCrossRefGoogle Scholar
  37. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRefGoogle Scholar
  39. Jorgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR (2008) Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283:10671–10678PubMedCrossRefGoogle Scholar
  40. Just I, Schallehn G, Aktories K (1992) A novel C3-like ADP-ribosyltransferase produced by Clostridium limosum. In: Poirier GG, Moreau P (eds) ADP-ribosylation reactions. Springer, New York, pp 373–376CrossRefGoogle Scholar
  41. Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995) Rho-ADP-ribosylating exoenzyme from Bacillus cereus—purification, characterization and identification of the NAD-binding site. Biochemistry 34:334–340PubMedCrossRefGoogle Scholar
  42. Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SD, Simpson RM, Lott JS, Hankamer B, Hurst MR (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci USA 108:20544–20549PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142PubMedCrossRefGoogle Scholar
  44. Lang AE, Ernst K, Lee H, Papatheodorou P, Schwan C, Barth H, Aktories K (2013) The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of Photorhabdus luminescens ADP-ribosyltransferases. Cell MicrobiolGoogle Scholar
  45. Lim L, Hall C, Monfries C (1996) Regulation of actin cytoskeleton by Rho-family GTPases and their associated proteins. Cell Dev Biol 7:699–706CrossRefGoogle Scholar
  46. Mannherz HG, Hannappel E (2009) The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskelet 66:839–851CrossRefGoogle Scholar
  47. Maresso AW, Baldwin MR, Barbieri JT (2004) Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J Biol Chem 279:38402–38408PubMedCrossRefGoogle Scholar
  48. Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457PubMedGoogle Scholar
  49. Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4:77–81PubMedCrossRefGoogle Scholar
  50. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62PubMedCrossRefGoogle Scholar
  51. Otto H, Hanson PI, Chapman ER, Blasi J, Jahn R (1995) Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. Biochem Biophys Res Commun 212:945–952PubMedCrossRefGoogle Scholar
  52. Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genom 6:139CrossRefGoogle Scholar
  53. Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases—implications for the origin of exotoxins and their human homologues. Trends Microbiol 9:302–307PubMedCrossRefGoogle Scholar
  54. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407PubMedPubMedCentralGoogle Scholar
  55. Perieteanu AA, Visschedyk DD, Merrill AR, Dawson JF (2010) ADP-ribosylation of cross-linked actin generates barbed-end polymerization-deficient F-actin oligomers. Biochemistry 49:8944–8954PubMedCrossRefGoogle Scholar
  56. Pop M, Aktories K, Schmidt G (2004) Isotype-specific degradation of Rac activated by the cytotoxic necrotizing factor 1 (CNF1). J Biol Chem 279:35840–35848PubMedCrossRefGoogle Scholar
  57. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399PubMedCrossRefGoogle Scholar
  58. Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13:2600–2610PubMedPubMedCentralGoogle Scholar
  59. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRefGoogle Scholar
  60. Safer D (1992) The interaction of actin with thymosin β4. J Muscle Res Cell Motil 13:269–271PubMedCrossRefGoogle Scholar
  61. Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229PubMedCrossRefGoogle Scholar
  62. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729PubMedCrossRefGoogle Scholar
  63. Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304PubMedCrossRefGoogle Scholar
  64. Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605PubMedGoogle Scholar
  65. Sheets JJ, Hey TD, Fencil KJ, Burton SL, Ni W, Lang AE, Benz R, Aktories K (2011) Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 286:22742–22749PubMedCrossRefPubMedCentralGoogle Scholar
  66. Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: Identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261PubMedPubMedCentralGoogle Scholar
  67. Stoll T, Markwirth G, Reipschlager S, Schmidt G (2009) A new member of a growing toxin family—Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxicon 54:745–753PubMedCrossRefGoogle Scholar
  68. Sugai M, Enomoto T, Hashimoto K, Matsumoto K, Matsuo Y, Ohgai H, Hong Y-M, Inoue S, Yoshikawa K, Suginaka H (1990) A novel epidermal cell differentiation inhibitor (EDIN): Purification and characterization from Staphylococcus aureus. Biochem Biophys Res Commun 173:92–98PubMedCrossRefGoogle Scholar
  69. Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10-regulator of kinase (Crk). J Biol Chem 278:32794–32800PubMedCrossRefGoogle Scholar
  70. Takai Y, Kaibuchi K, Kikuchi A, Sasaki T, Shirataki H (1993) Regulators of small GTPases. Ciba Found Symp 176:128–138PubMedGoogle Scholar
  71. Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci USA 110:4267–4272 Google Scholar
  72. Ui M (1984) Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 5:277–279CrossRefGoogle Scholar
  73. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52PubMedCrossRefGoogle Scholar
  74. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/g-actin in arginine 177. J Biol Chem 263:696–700PubMedGoogle Scholar
  75. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304PubMedCrossRefGoogle Scholar
  76. Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR (2010) Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534PubMedCrossRefPubMedCentralGoogle Scholar
  77. Waterfield NR, Bowen DJ, Fetherston JD, Perry RD, ffrench-Constant RH (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9:185–191PubMedCrossRefGoogle Scholar
  78. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574PubMedCrossRefGoogle Scholar
  79. Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742PubMedGoogle Scholar
  80. Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184PubMedCrossRefGoogle Scholar
  81. West RE, Moss J, Vaughan M, Liu T, Liu T-Y (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430PubMedGoogle Scholar
  82. Wilde C, Chhatwal GS, Aktories K (2002) C3stau, a new member of the family of C3-like ADP-ribosyltransferases. Trends Microbiol 10:5–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Klaus Aktories
    • 1
  • Gudula Schmidt
    • 1
  • Alexander E. Lang
    • 1
  1. 1.Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations