Skip to main content

Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10

  • Chapter
  • First Online:
Endogenous ADP-Ribosylation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 384))

Abstract

The transfer of ADP-ribose from NAD+ to a substrate by ADP-ribosyltransferases, ADP-ribosylation, is a multifunctional posttranslational modification. While many studies have addressed the function of poly-ADP-ribosylation, for example, in DNA repair, signaling, and gene transcription, little is known about the role of mono-ADP-ribosylation. Recent work describing the mono-ADP-ribosyltransferase ARTD10/PARP10 suggests that this enzyme affects apoptosis, NF-κB signaling, and DNA damage repair, at least in part dependent on its activity as mono-ADP-ribosyltransferase. Moreover, the macrodomain-containing proteins MacroD1, MacroD2, and TARG1/C6orf130 were recently described as hydrolases, which remove mono-ADP-ribosylation thus providing evidence that this modification is reversible. In this review, we discuss these novel findings and their broader implications for cell behavior. We suggest functions of ARTD10 in immunity, metabolism, and cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAR:

Adenosine deaminases acting on RNA

APOB:

Apolipoprotein B

ARTC:

ADP-ribosyltransferases Cholera toxin-like

ARTD:

ADP-ribosyltransferase Diphtheria toxin-like

GSK3β:

Glycogen synthase kinase 3β

IFN:

Interferon

MEFs:

Mouse embryo fibroblasts

NES:

Nuclear export sequence

NLS:

Nuclear localization sequence

PIP:

PCNA-interacting peptide

PTM:

Posttranslational modification

RRM:

RNA recognition motif

SNP:

Single nucleotide polymorphism

UIM:

Ubiquitin interaction motif

References

  • Altmeyer M, Messner S, Hassa PO et al (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic acids research 37:3723–3738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  PubMed  CAS  Google Scholar 

  • Atasheva S, Akhrymuk M, Frolova EI et al (2012) New PARP gene with an anti-alphavirus function. J Virol 86:8147–8160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88:2116–2130

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkauskaite E, Jankevicius G, Ladurner AG et al (2013) The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280:3491–3507

    Article  PubMed  CAS  Google Scholar 

  • Benn M (2009) Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review. Atherosclerosis 206:17–30

    Article  PubMed  CAS  Google Scholar 

  • Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends in immunology 31:24–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bosinger SE, Li Q, Gordon SN et al (2009) Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. The Journal of clinical investigation 119:3556–3572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caron C, Boyault C, Khochbin S (2005) Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 27:408–415

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunological reviews 246:95–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou HY, Chou HT, Lee SC (2006) CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10). J Biol Chem 281:15201–15207

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  • Clemens MJ, Bushell M, Jeffrey IW et al (2000) Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ 7:603–615

    Article  PubMed  CAS  Google Scholar 

  • Cruz AR, Moore MW, La Vake CJ et al (2008) Phagocytosis of Borrelia burgdorferi, the Lyme disease spirochete, potentiates innate immune activation and induces apoptosis in human monocytes. Infect Immun 76:56–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I et al (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 (Pt 2):249–268

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84:137–146

    Article  PubMed  Google Scholar 

  • Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288

    Article  PubMed  CAS  Google Scholar 

  • Di Girolamo M, Dani N, Stilla A et al (2005) Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. Febs J 272:4565–4575

    Article  PubMed  Google Scholar 

  • DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400

    Article  PubMed  Google Scholar 

  • Feijs KL, Forst AH, Verheugd P et al (2013a) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14:443–451

    Article  PubMed  Google Scholar 

  • Feijs KL, Kleine H, Braczynski A et al (2013b) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11:5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feijs KL, Verheugd P, Luscher B (2013c) Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 280:3519–3529

    Article  PubMed  CAS  Google Scholar 

  • Forst AH, Karlberg T, Herzog N et al (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21:462–475

    Article  PubMed  CAS  Google Scholar 

  • Fuchs P, Zorer M, Reipert S et al (2009) Targeted inactivation of a developmentally regulated neural plectin isoform (plectin 1c) in mice leads to reduced motor nerve conduction velocity. J Biol Chem 284:26502–26509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fujimoto H, Higuchi M, Koike M et al (2012) A possible overestimation of the effect of acetylation on lysine residues in KQ mutant analysis. J Comput Chem 33:239–246

    Article  PubMed  CAS  Google Scholar 

  • Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Sintes R, Hernandez F, Lucas JJ et al (2011) GSK-3 Mouse Models to Study Neuronal Apoptosis and Neurodegeneration. Front Mol Neurosci 4:45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grabbe C, Husnjak K, Dikic I (2011) The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 12:295–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Groth A, Rocha W, Verreault A et al (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    Article  PubMed  CAS  Google Scholar 

  • Guttler T, Gorlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30:3457–3474

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale BG, Randall RE, Ortin J et al (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376

    Article  PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Elser M et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He T, Wang Q, Feng G et al (2011) Computational detection and functional analysis of human tissue-specific A-to-I RNA editing. PLoS ONE 6:e18129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herzog N, Hartkamp JD, Verheugd P et al (2013) Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro-apoptotic function. FEBS J 280:1330–1343

    Article  PubMed  CAS  Google Scholar 

  • Hindmarch C, Yao S, Beighton G et al (2006) A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Proc Natl Acad Sci U S A 103:1609–1614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoeflich KP, Luo J, Rubie EA et al (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90

    Article  PubMed  CAS  Google Scholar 

  • Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  PubMed  CAS  Google Scholar 

  • Hovatta I, Zapala MA, Broide RS et al (2007) DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies. Genome Biol 8:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jankevicius G, Hassler M, Golia B et al (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nature structural & molecular biology 20:508–514

    Article  PubMed  CAS  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamieniarz K, Schneider R (2009) Tools to tackle protein acetylation. Chem Biol 16:1027–1029

    Article  PubMed  CAS  Google Scholar 

  • Kang JH, Ryu HS, Kim HT et al (2009) Proteomic analysis of human macrophages exposed to hypochlorite-oxidized low-density lipoprotein. Biochim Biophys Acta 1794:446–458

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Hahn Y (2012) Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics 13:306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kleine H, Herrmann A, Lamark T et al (2012) Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Commun Signal 10:28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kleine H, Luscher B (2009) Learning how to read ADP-ribosylation. Cell 139:17–19

    Article  PubMed  CAS  Google Scholar 

  • Kleine H, Poreba E, Lesniewicz K et al (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20:294–302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39:8–24

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kudo N, Matsumori N, Taoka H et al (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A 96:9112–9117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laing S, Unger M, Koch-Nolte F et al (2011) ADP-ribosylation of arginine. Amino Acids 41:257–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lesniewicz K, Luscher-Firzlaff J, Poreba E et al (2005) Overlap of the gene encoding the novel poly(ADP-ribose) polymerase Parp10 with the plectin 1 gene and common use of exon sequences. Genomics 86:38–46

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wittwer T, Weber A et al (2012) Regulation of NF-kappaB activity by competition between RelA acetylation and ubiquitination. Oncogene 31:611–623

    PubMed  CAS  PubMed Central  Google Scholar 

  • Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26:417–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud L, Al-Saif M, Amer HM et al (2011) Green fluorescent protein reporter system with transcriptional sequence heterogeneity for monitoring the interferon response. Journal of virology 85:9268–9275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS journal 272:2118–2131

    Article  CAS  Google Scholar 

  • Marsischky GT, Wilson BA, Collier RJ (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270:3247–3254

    Article  PubMed  CAS  Google Scholar 

  • McCormick SP, Ng JK, Veniant M et al (1996) Transgenic mice that overexpress mouse apolipoprotein B. Evidence that the DNA sequences controlling intestinal expression of the apolipoprotein B gene are distant from the structural gene. J Biol Chem 271:11963–11970

    Article  PubMed  CAS  Google Scholar 

  • Messner S, Altmeyer M, Zhao H et al (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38:6350–6362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542

    Article  PubMed  CAS  Google Scholar 

  • Mills CN, Nowsheen S, Bonner JA et al (2011) Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors. Front Mol Neurosci 4:47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mingot JM, Bohnsack MT, Jakle U et al (2004) Exportin 7 defines a novel general nuclear export pathway. EMBO J 23:3227–36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  PubMed  CAS  Google Scholar 

  • Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–1004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nezis IP, Stenmark H (2012) p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal 17:786–793

    Article  PubMed  CAS  Google Scholar 

  • Nicolae CM, Aho ER, Vlahos AH et al (2014) The ADP-ribosyltransferase PARP10/ARTD10 interacts with Proliferating Cell Nuclear Antigen (PCNA) and is required for DNA damage tolerance. J Biol Chem

    Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    Article  PubMed  CAS  Google Scholar 

  • Otto H, Reche PA, Bazan F et al (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139

    Article  Google Scholar 

  • Rosenthal F, Feijs KL, Frugier E et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20:502–507

    Article  PubMed  CAS  Google Scholar 

  • Rouleau M, Patel A, Hendzel MJ et al (2010) PARP inhibition: PARP1 and beyond. Nature reviews. Cancer 10:293–301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salazar JC, Duhnam-Ems S, La Vake C et al (2009) Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS pathogens 5:e1000444

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarpa ES, Fabrizio G, Di Girolamo M (2013) A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J 280:3551–3562

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  • Sharifi R, Morra R, Denise Appel C et al (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. The EMBO journal

    Google Scholar 

  • Shen X, Wang W, Wang L et al (2012) Identification of genes affecting apolipoprotein B secretion following siRNA-mediated gene knockdown in primary human hepatocytes. Atherosclerosis 222:154–157

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Perin JC, Leipzig J et al (2011) Genome-wide analysis of interferon regulatory factor I binding in primary human monocytes. Gene 487:21–28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78:769–796

    Article  PubMed  CAS  Google Scholar 

  • Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22:5928–5940

    Article  PubMed  PubMed Central  Google Scholar 

  • Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thiede B, Dimmler C, Siejak F et al (2001) Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J Biol Chem 276:26044–26050

    Article  PubMed  CAS  Google Scholar 

  • Thomas MP, Lieberman J (2013) Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 253:237–252

    Article  PubMed  Google Scholar 

  • Verheugd P, Forst AH, Milke L et al (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nature communications 4:1683

    Article  PubMed  Google Scholar 

  • Vervoorts J, Luscher-Firzlaff JM, Rottmann S et al (2003) Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 4:484–490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vyas S, Chesarone-Cataldo M, Todorova T et al (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nature communications 4:2240

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10:M111 013284

    PubMed  Google Scholar 

  • Welsby I, Hutin D, Leo O (2012) Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Biochem Pharmacol 84:11–20

    Article  PubMed  CAS  Google Scholar 

  • Wong CH, Chan H, Ho CY et al (2009) Apoptotic histone modification inhibits nuclear transport by regulating RCC1. Nat Cell Biol 11:36–45

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences 35:161–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu M, Schreek S, Cerni C et al (2005) PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24:1982–1993

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Zhang C, Yang Y et al (2011) The interaction between the PARP10 protein and the NS1 protein of H5N1 AIV and its effect on virus replication. Virology journal 8:546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Andrew Jefferson for editing the manuscript. The work in our laboratory was supported by a Mildred Scheel Stipend of the German Cancer Aid (to MK), the START program of the Medical School of the RWTH Aachen University, and by the Deutsche Forschungsgemeinschaft DFG (to BL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lüscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaufmann, M., Feijs, K.L.H., Lüscher, B. (2014). Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10. In: Koch-Nolte, F. (eds) Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, vol 384. Springer, Cham. https://doi.org/10.1007/82_2014_379

Download citation

Publish with us

Policies and ethics