Skip to main content

Transcriptional Control of NK Cell Differentiation and Function

  • Chapter
  • First Online:
Transcriptional Control of Lineage Differentiation in Immune Cells

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 381))

Abstract

Natural killer (NK) cells are crucial to mounting an effective immune response. They have a significant role in cancer immunosurveillance and function as a bridge between innate and adaptive immunity. However, until recently, surprisingly little was known about the molecular basis of NK cell development as compared to the impressive body of knowledge on B- and T-cell development. Here we outline the key transcription factors known to influence NK cell development and at what stages they function. The recent progress in understanding allows us to speculate on the nature of the network of interactions between transcription factors that ultimately facilitate the production of mature functional NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolfsson J, MÃ¥nsson R, Buza-Vidas N et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-magakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121:295–300

    Article  CAS  PubMed  Google Scholar 

  • Aliahmad P, de la Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11:945–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bain G, Robanus Maandag EC, Izon DJ et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892

    Article  CAS  PubMed  Google Scholar 

  • Barton K, Muthasamy N, Fischer C et al (1998) The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9:555–563

    Article  CAS  PubMed  Google Scholar 

  • Boos MD, Yokota Y, Eberl G et al (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204:1119–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carotta S, Pang SH, Nutt SL et al (2011) Identification of the earliest NK-cell precursor in the mouse BM. Blood 117:5449–5552

    Article  CAS  PubMed  Google Scholar 

  • Chiossone L, Chaix J, Fuseri N et al (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    Article  CAS  PubMed  Google Scholar 

  • Fathman JW, Bhattacharya D, Inlay M et al (2011) Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118:5439–5447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freud AG, Yokohama A, Becknell B et al (2006) Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 203:1033–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H et al (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ et al (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36:55–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heemskerk MH, Blom B, Nolan G et al (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714

    Article  CAS  PubMed  Google Scholar 

  • Intlekofer AM, Takemoto N, Wherry EJ et al (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Intlekofer AM, Banerjee A, Takemoto N et al (2008) Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321:408–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaleco AC, Blom B, Res P et al (1997) Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. J Immunol 159:694–702

    CAS  PubMed  Google Scholar 

  • Jenne CN, Enders A, Rivera R et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaisho T, Tsutsui H, Tanaka T et al (1999) Impairment of natural killer cytotoxic activity and interferon gamma production in CCAAT/enhancer binding protein gamma-deficient mice. J Exp Med 190:1573–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kallies A, Carotta S, Huntington ND et al (2011) A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 117:1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Kamizono S, Duncan GS, Seidel MG et al (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206:2977–2986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim S, Iizuka K, Kang HS et al (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523–528

    Article  PubMed  Google Scholar 

  • Klose CS, Kiss EA, Schwierzeck V et al (2013) A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494:261–265

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    Article  CAS  PubMed  Google Scholar 

  • Lacorazza HD, Di Cristofano A, Deblasio A et al (2002) The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17:437–449

    Article  CAS  PubMed  Google Scholar 

  • Li P, Burke S, Wang J et al (2010) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohoff M, Duncan GS, Ferrick D et al (2000) Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type I cells. J Exp Med 192:325–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Male V, Nisoli I, Gascoyne DM et al (2012) E4bp4: an unexpected player in the immune response. Trends Immunol 33:98–102

    Article  CAS  PubMed  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T et al (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med. 211:635–642

    Article  CAS  PubMed  Google Scholar 

  • Narni-Mancinelli E, Jaeger BN, Bernat C et al (2012) Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 335:344–348

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Sato T, Kohu K et al (2008) Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation. Int Immunol 20:71–79

    Article  CAS  PubMed  Google Scholar 

  • Possot C, Schmutz S, Chea S et al (2011) Notch signaling is necessary for adult, but not fetal, development of RORγt(+) innate lymphoid cells. Nat Immunol 12:949–958

    Article  CAS  PubMed  Google Scholar 

  • Rankin L, Groom JR, Chopin M et al (2013) The transcription factor T-bet is essential for the development of NKp46(+) innate lymphocytes via the Notch pathway. Nat Immunol 14:389–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez SH, Chandler KJ, Spaulding C et al (2012) Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36:921–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosmaraki EE, Douagi I, Roth C et al (2001) Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31:1900–1909

    Article  CAS  PubMed  Google Scholar 

  • Samson SI, Richard O, Tavian M et al (2003) GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity 19:701–711

    Article  CAS  PubMed  Google Scholar 

  • Sciumé G, Hirahara K, Takahashi H et al (2012) Distinct requirements for T-bet in gut innate lymphoid cells. J Exp Med 209:2331–2338

    Article  PubMed Central  PubMed  Google Scholar 

  • Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12:21–27

    Article  CAS  PubMed  Google Scholar 

  • Sun XH, Copeland NG, Jenkins NA et al (1991) Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11:5603–5611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda K, Cretney E, Hayakawa Y et al (2005) TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105:2082–2089

    Article  CAS  PubMed  Google Scholar 

  • Taki S, Nakajima S, Ichikawa E et al (2005) IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells. J Immunol 174:6005–6012

    Article  CAS  PubMed  Google Scholar 

  • Townsend MJ, Weinmann AS, Matsuda JL et al (2004) T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20:477–494

    Article  CAS  PubMed  Google Scholar 

  • Uksila J, Lassila O, Hirvonen T et al (1983) Development of natural killer cell function in the human fetus. J Immunol 130:153–156

    CAS  PubMed  Google Scholar 

  • Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  • Vosshenrich CA, García-Ojeda ME, Samson-Villéger SI et al (2006) A thymic pathway of mouse natural killer cell development characterised by GATA-3 and CD127. Nat Immunol 7:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Warner K, Luther C, Takei F (2012) Lymphoid progenitors in normal mouse lymph node develop into NK cells and T cells in vitro and in vivo. Exp Hematol 40:401–406

    Article  CAS  PubMed  Google Scholar 

  • Wong SH, Walker JA, Jolin HE et al (2012) Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13:229–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Q, Saenz SA, Zlotoff DA et al (2011) Cutting edge: natural helper cells derive from lymphoid progenitors. J Immunol 187:5505–5509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokota Y, Mansouri A, Mori S et al (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. M. Brady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Male, V., Brady, H.J.M. (2014). Transcriptional Control of NK Cell Differentiation and Function. In: Ellmeier, W., Taniuchi, I. (eds) Transcriptional Control of Lineage Differentiation in Immune Cells. Current Topics in Microbiology and Immunology, vol 381. Springer, Cham. https://doi.org/10.1007/82_2014_376

Download citation

Publish with us

Policies and ethics