Skip to main content

Transcriptional Control of Regulatory T cells

  • Chapter
  • First Online:
Transcriptional Control of Lineage Differentiation in Immune Cells

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 381))

Abstract

Regulatory T cells (Tregs) constitute unique T cell lineage that plays a key role for immunological tolerance. Tregs are characterized by the expression of the forkhead box transcription factor Foxp3, which acts as a lineage-specifying factor by determining the unique suppression profile of these immune cells. Here, we summarize the recent progress in understanding how Foxp3 expression itself is epigenetically and transcriptionally controlled, how the Treg-specific signature is achieved and how unique properties of Treg subsets are defined by other transcription factors. Finally, we will discuss recent studies focusing on the molecular targeting of Tregs to utilize the specific properties of this unique cell type in therapeutic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, Rudensky A, Sakaguchi S, Shevach EM, Vignali DA, Ziegler SF (2013) Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 14(4):307–308. doi:10.1038/ni.2554

    CAS  PubMed  Google Scholar 

  • Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19(4):345–354

    CAS  PubMed  Google Scholar 

  • Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P, Wei WZ, Cavallo F (2006) Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 66(15):7734–7740. doi:10.1158/0008-5472.CAN-06-1432

    CAS  PubMed  Google Scholar 

  • Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3(8):756–763

    CAS  PubMed  Google Scholar 

  • Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184(2):387–396

    CAS  PubMed  Google Scholar 

  • Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28(6):582–592

    Google Scholar 

  • Bandukwala HS, Wu Y, Feuerer M, Chen Y, Barboza B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L (2011) Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34(4):479–491. doi:10.1016/j.immuni.2011.02.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnes MJ, Krebs P, Harris N, Eidenschenk C, Gonzalez-Quintial R, Arnold CN, Crozat K, Sovath S, Moresco EM, Theofilopoulos AN, Beutler B, Hoebe K (2009) Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 7(3):e51. doi:10.1371/journal.pbio.1000051

    PubMed  Google Scholar 

  • Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54(6):369–377

    CAS  PubMed  Google Scholar 

  • Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3 + conventional T cells. Eur J Immunol 37(9):2378–2389. doi:10.1002/eji.200737594

    CAS  PubMed  Google Scholar 

  • Bayer AL, Lee JY, de la Barrera A, Surh CD, Malek TR (2008) A function for IL-7R for CD4+CD25+ Foxp3 + T regulatory cells. J Immunol 181(1):225–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 102(14):5138–5143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betts G, Twohig J, Van den Broek M, Sierro S, Godkin A, Gallimore A (2007) The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br J Cancer 96(12):1849–1854. doi:10.1038/sj.bjc.6603824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005) NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J Exp Med 201(2):181–187. doi:10.1084/jem.20041538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13. doi:10.1038/nrg3080

    CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73

    CAS  PubMed  Google Scholar 

  • Bruno L, Mazzarella L, Hoogenkamp M, Hertweck A, Cobb BS, Sauer S, Hadjur S, Leleu M, Naoe Y, Telfer JC, Bonifer C, Taniuchi I, Fisher AG, Merkenschlager M (2009) Runx proteins regulate Foxp3 expression. J Exp Med 206(11):2329–2337. doi:10.1084/jem.20090226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28(1):112–121. doi:10.1016/j.immuni.2007.11.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3 + regulatory T cells. J Immunol 178(1):280–290

    CAS  PubMed  Google Scholar 

  • Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295

    Google Scholar 

  • Camperio C, Caristi S, Fanelli G, Soligo M, Del Porto P, Piccolella E (2012) Forkhead transcription factor FOXP3 upregulates CD25 expression through cooperation with RelA/NF-kappaB. PLoS ONE 7(10):e48303. doi:10.1371/journal.pone.0048303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao Z, Wara AK, Icli B, Sun X, Packard RR, Esen F, Stapleton CJ, Subramaniam M, Kretschmer K, Apostolou I, von Boehmer H, Hansson GK, Spelsberg TC, Libby P, Feinberg MW (2009) Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4+CD25− T cells and T regulatory cells. J Biol Chem 284(37):24914–24924. doi:10.1074/jbc.M109.000059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250(1):1–23

    CAS  PubMed  Google Scholar 

  • Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T, Lopez-Sagaseta J, Guembe L, Sarobe P, Prieto J, Borras-Cuesta F, Lasarte JJ (2010) A peptide inhibitor of FOXP3 impairs regulatory T cell activity and improves vaccine efficacy in mice. J Immunol 185(9):5150–5159. doi:10.4049/jimmunol.1001114

    CAS  PubMed  Google Scholar 

  • Chae WJ, Henegariu O, Lee SK, Bothwell AL (2006) The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc Natl Acad Sci USA 103(25):9631–9636. doi:10.1073/pnas.0600225103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991. doi:10.1126/science.1172702

    CAS  PubMed  Google Scholar 

  • Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578. doi:10.1016/j.immuni.2011.03.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen KJ, Lin SZ, Zhou L, Xie HY, Zhou WH, Taki-Eldin A, Zheng SS (2011a) Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS ONE 6(9):e24671. doi:10.1371/journal.pone.0024671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM (2011b) IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3 + T cells in vivo. J Immunol 186(11):6329–6337. doi:10.4049/jimmunol.1100061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C, Zhang J, Yu N, Li X, Shan Z, Nie J, Gao Z, Tian H, Li Y, Yao Z, Zheng Y, Park BV, Pan Z, Zhang J, Dang E, Li Z, Wang H, Luo W, Li L, Semenza GL, Zheng SG, Loser K, Tsun A, Greene MI, Pardoll DM, Pan F, Li B (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39(2):272–285

    CAS  PubMed  Google Scholar 

  • Chong MM, Rasmussen JP, Rudensky AY, Littman DR (2008) The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205(9):2005–2017. doi:10.1084/jem.20081219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, Wang YH, Lim H, Reynolds JM, Zhou XH, Fan HM, Liu ZM, Neelapu SS, Dong C (2011) Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 17(8):983–988. doi:10.1038/nm.2426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553. doi:10.1038/nature11132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cirillo LA, Zaret KS (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 4(6):961–969

    CAS  PubMed  Google Scholar 

  • Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364(6436):412–420. doi:10.1038/364412a0

    CAS  PubMed  Google Scholar 

  • Cording S, Wahl B, Kulkarni D, Chopra H, Pezoldt J, Buettner M, Dummer A, Hadis U, Heimesaat M, Bereswill S, Falk C, Bode U, Hamann A, Fleissner D, Huehn J, Pabst O (2013) The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol. doi:10.1038/mi.2013.54

    PubMed  Google Scholar 

  • Cozzo Picca C, Simons DM, Oh S, Aitken M, Perng OA, Mergenthaler C, Kropf E, Erikson J, Caton AJ (2011) CD4CD25Foxp3 regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci USA 108(36):14890–14895. doi:10.1073/pnas.1103810108

    PubMed Central  PubMed  Google Scholar 

  • Crellin NK, Garcia RV, Levings MK (2007) Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109(5):2014–2022. doi:10.1182/blood-2006-07-035279

    CAS  PubMed  Google Scholar 

  • Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive Foxp3 + regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635. doi:10.1016/j.immuni.2009.05.002

    CAS  PubMed  Google Scholar 

  • D’Cruz LM, Klein L (2005) Development and function of agonist-induced CD25+ Foxp3 + regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6(11):1152–1159

    PubMed  Google Scholar 

  • Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784. doi:10.1016/j.cell.2011.07.033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Vries IJ, Castelli C, Huygens C, Jacobs JF, Stockis J, Schuler-Thurner B, Adema GJ, Punt CJ, Rivoltini L, Schuler G, Coulie PG, Lucas S (2011) Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin Cancer Res 17(4):841–848. doi:10.1158/1078-0432.CCR-10-2227 An Official Journal of the American Association for Cancer Research

    PubMed  Google Scholar 

  • Deenick EK, Elford AR, Pellegrini M, Hall H, Mak TW, Ohashi PS (2010) c-Rel but not NF-kappaB1 is important for T regulatory cell development. Eur J Immunol 40(3):677–681. doi:10.1002/eji.201040298

    CAS  PubMed  Google Scholar 

  • Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844. doi:10.1016/j.immuni.2009.04.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303. doi:10.1038/ni.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittmer U, He H, Messer RJ, Schimmer S, Olbrich AR, Ohlen C, Greenberg PD, Stromnes IM, Iwashiro M, Sakaguchi S, Evans LH, Peterson KE, Yang G, Hasenkrug KJ (2004) Functional impairment of CD8+ T cells by regulatory T cells during persistent retroviral infection. Immunity 20(3):293–303

    CAS  PubMed  Google Scholar 

  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172(9):5149–5153

    CAS  PubMed  Google Scholar 

  • Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009a) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939. doi:10.1038/nm.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C (2010) Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc Natl Acad Sci USA 107(13):5919–5924. doi:10.1073/pnas.1002006107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feuerer M, Hill JA, Mathis D, Benoist C (2009b) Foxp3 + regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10(7):689–695. doi:10.1038/ni.1760

    CAS  PubMed  Google Scholar 

  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the Foxp3 locus in regulatory T cells. PLoS Biol 5(2):e38. doi:10.1371/journal.pbio.0050038

    PubMed Central  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    CAS  PubMed  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029. doi:10.1084/jem.20090847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S, Fassett MS, Gazit R, Adoro S, Glimcher L, Chan S, Kastner P, Rossi D, Collins JJ, Mathis D, Benoist C (2012) A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol 13(10):972–980. doi:10.1038/ni.2420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445(7129):771–775

    CAS  PubMed  Google Scholar 

  • Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z (2008) Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 46(2):213−224. doi:10.1016/j.molimm.2008.08.275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hancock WW, Ozkaynak E (2009) Three distinct domains contribute to nuclear transport of murine Foxp3. PLoS ONE 4(11):e7890. doi:10.1371/journal.pone.0007890

    PubMed Central  PubMed  Google Scholar 

  • Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC (2010) Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207(7):1381–1391. doi:10.1084/jem.20100004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, Wise PM, Chen A, Zheng YQ, Simpson PM, Gorski J, Salzman NH, Hessner MJ, Chatila TA, Williams CB (2011) A requisite role for induced regulatory T Cells in tolerance based on expanding antigen receptor diversity. Immunity 35(1):109–122. doi:10.1016/j.immuni.2011.03.029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3 + cells. J Exp Med 205:565–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL (2012) FOXO transcription factors throughout T cell biology. Nat Rev Immunol 12(9):649–661. doi:10.1038/nri3278

    CAS  PubMed  Google Scholar 

  • Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27(5):786–800. doi:10.1016/j.immuni.2007.09.010

    CAS  PubMed  Google Scholar 

  • Hinterberger M, Wirnsberger G, Klein L (2011) B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front Immunol 2:30. doi:10.3389/fimmu.2011.00030

    PubMed Central  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    CAS  PubMed  Google Scholar 

  • Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12(3):157–167. doi:10.1038/nri3155

    CAS  PubMed  Google Scholar 

  • Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21(2):267–277

    CAS  PubMed  Google Scholar 

  • Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, Kamanaka M, Kobayashi Y, Booth CJ, Rudensky AY, Roncarolo MG, Battaglia M, Flavell RA (2011) Th17 cells express interleukin-10 receptor and are controlled by Foxp3 - and Foxp3 + regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34(4):554–565. doi:10.1016/j.immuni.2011.01.020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9(2):83–89. doi:10.1038/nri2474

    CAS  PubMed  Google Scholar 

  • Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, Banerjee A, Proietto A, Gugasyan R, Li W, McNally A, Steptoe RJ, Thomas R, Shannon MF, Gerondakis S (2009) c-Rel is required for the development of thymic Foxp3 + CD4 regulatory T cells. J Exp Med 206(13):3001–3014. doi:10.1084/jem.20091411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janson PC, Winerdal ME, Marits P, Thorn M, Ohlsson R, Winqvist O (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS ONE 3(2):e1612

    PubMed Central  PubMed  Google Scholar 

  • Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V, Gallimore A (2002) Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2:1

    PubMed  Google Scholar 

  • Jonsson H, Peng SL (2005) Forkhead transcription factors in immunology. Cell Mol Life Sci 62(4):397–409. doi:10.1007/s00018-004-4365-8

    CAS  PubMed  Google Scholar 

  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306

    CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY (2012a) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623

    CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012b) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482(7385):395–399. doi:10.1038/nature10772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182(11):6648–6652. doi:10.4049/jimmunol.0803320

    CAS  PubMed  Google Scholar 

  • Katoh H, Qin ZS, Liu R, Wang L, Li W, Li X, Wu L, Du Z, Lyons R, Liu CG, Liu X, Dou Y, Zheng P, Liu Y (2011) FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1. Mol Cell 44(5):770–784. doi:10.1016/j.molcel.2011.10.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerdiles YM, Stone EL, Beisner DR, McGargill MA, Ch’en IL, Stockmann C, Katayama CD, Hedrick SM (2010) Foxo transcription factors control regulatory T cell development and function. Immunity 33(6):890–904. doi:10.1016/j.immuni.2010.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342

    CAS  PubMed  Google Scholar 

  • Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced Foxp3 gene expression: a role for DNA methylation. J Exp Med 204(7):1543–1551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of Foxp3 + regulatory T cells. Immunity 31(4):609–620. doi:10.1016/j.immuni.2009.09.003

    CAS  PubMed  Google Scholar 

  • Klunker S, Chong MM, Mantel PY, Palomares O, Bassin C, Ziegler M, Ruckert B, Meiler F, Akdis M, Littman DR, Akdis CA (2009) Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3 + inducible regulatory T cells. J Exp Med 206(12):2701–2715. doi:10.1084/jem.20090596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202(10):1375–1386. doi:10.1084/jem.20050855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602. doi:10.1038/ni.1731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koh KP, Sundrud MS, Rao A (2009) Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS ONE 4(12):e8109. doi:10.1371/journal.pone.0008109

    PubMed Central  PubMed  Google Scholar 

  • Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 12:1219–1227

    Google Scholar 

  • Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478(7368):250–254. doi:10.1038/nature10434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, Basu S, Riley JL, Hancock WW, Shen Y, Saouaf SJ, Greene MI (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104(11):4571–4576. doi:10.1073/pnas.0700298104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Hu P, Khawli LA, Epstein AL (2003) Complete regression of experimental solid tumors by combination LEC/chTNT-3 immunotherapy and CD25+ T-cell depletion. Cancer Res 63(23):8384–8392

    CAS  PubMed  Google Scholar 

  • Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB, Chatila TA (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8(4):359–368

    CAS  PubMed  Google Scholar 

  • Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan JJ, Fagarasan S, Liston A, Smith KG, Vinuesa CG (2011) Foxp3 + follicular regulatory T cells control the germinal center response. Nat Med 17(8):975–982. doi:10.1038/nm.2425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28(1):100–111. doi:10.1016/j.immuni.2007.11.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liston A, Lu LF, O’Carroll D, Tarakhovsky A, Rudensky AY (2008) Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205(9):1993–2004. doi:10.1084/jem.20081062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Tahk S, Yee KM, Fan G, Shuai K (2010) The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330(6003):521–525. doi:10.1126/science.1193787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, Chi H (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10(7):769–777. doi:10.1038/ni.1743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+CD25+ Foxp3 + regulatory T cells. Nat Immunol 9(6):632–640. doi:10.1038/ni.1607

    CAS  PubMed  Google Scholar 

  • Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009a) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31(6):921–931. doi:10.1016/j.immuni.2009.09.022

    CAS  PubMed  Google Scholar 

  • Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009b) Nuclear factor-kB modulates regulatory T cell development by directly regulating expression of the Foxp3 transcription factor. Immunity 31:921–931. doi:10.1016/j.immuni.2009.09.022

    CAS  PubMed  Google Scholar 

  • Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, Ziegler SF (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177(5):3133–3142

    CAS  PubMed  Google Scholar 

  • Mackey-Cushman SL, Gao J, Holmes DA, Nunoya JI, Wang R, Unutmaz D, Su L (2011) Foxp3 interacts with linker histone H1.5 to modulate gene expression and program Treg cell activity. Genes Immun 12(7):559–567. doi:10.1038/gene.2011.31

    CAS  PubMed  Google Scholar 

  • Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K, Bedke T, Johnson TS, Storn V, Schallenberg S, Enk AH (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120(12):2723–2733. doi:10.1002/ijc.22617

    CAS  PubMed  Google Scholar 

  • Mantel PY, Kuipers H, Boyman O, Rhyner C, Ouaked N, Ruckert B, Karagiannidis C, Lambrecht BN, Hendriks RW, Crameri R, Akdis CA, Blaser K, Schmidt-Weber CB (2007) GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 5(12):e329

    PubMed Central  PubMed  Google Scholar 

  • Mantel PY, Ouaked N, Ruckert B, Karagiannidis C, Welz R, Blaser K, Schmidt-Weber CB (2006) Molecular mechanisms underlying foxp3 induction in human T cells. J Immunol 176(6):3593–3602

    CAS  PubMed  Google Scholar 

  • Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201(7):1061–1067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medoff BD, Sandall BP, Landry A, Nagahama K, Mizoguchi A, Luster AD, Xavier RJ (2009) Differential requirement for CARMA1 in agonist-selected T-cell development. Eur J Immunol 39(1):78–84. doi:10.1002/eji.200838734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkenschlager M, von Boehmer H (2010) PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J Exp Med 207(7):1347–1350. doi:10.1084/jem.20101156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S (2012) Plasticity of Foxp3 + T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2):262–275. doi:10.1016/j.immuni.2011.12.012

    CAS  PubMed  Google Scholar 

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity 30(6):899–911. doi:10.1016/j.immuni.2009.03.019

    CAS  PubMed  Google Scholar 

  • Molinero LL, Yang J, Gajewski T, Abraham C, Farrar MA, Alegre ML (2009) CARMA1 controls an early checkpoint in the thymic development of Foxp3 + regulatory T cells. J Immunol 182(11):6736–6743. doi:10.4049/jimmunol.0900498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouly E, Chemin K, Nguyen HV, Chopin M, Mesnard L, Leite-de-Moraes M, Burlen-defranoux O, Bandeira A, Bories JC (2010) The Ets-1 transcription factor controls the development and function of natural regulatory T cells. J Exp Med 207(10):2113–2125. doi:10.1084/jem.20092153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagar M, Vernitsky H, Cohen Y, Dominissini D, Berkun Y, Rechavi G, Amariglio N, Goldstein I (2008) Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25− CD4+ T cells. Int Immunol 20(8):1041–1055

    CAS  PubMed  Google Scholar 

  • Oh-Hora M, Komatsu N, Pishyareh M, Feske S, Hori S, Taniguchi M, Rao A, Takayanagi H (2013) Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Immunity 38(5):881–895. doi:10.1016/j.immuni.2013.02.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N, Huehn J, Fehling HJ, Sparwasser T, Nakai K, Sakaguchi S (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for treg cell development. Immunity 37(5):785–799. doi:10.1016/j.immuni.2012.09.010

    CAS  PubMed  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B (2003) PI3 K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3(4):317–330. doi:10.1038/nri1056

    CAS  PubMed  Google Scholar 

  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59(13):3128–3133

    CAS  PubMed  Google Scholar 

  • Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685–689

    CAS  PubMed  Google Scholar 

  • Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65(6):2457–2464

    CAS  PubMed  Google Scholar 

  • Ouyang W, Beckett O, Ma Q, Li MO (2010a) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32(5):642–653. doi:10.1016/j.immuni.2010.04.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO (2010b) Foxo proteins cooperatively control the differentiation of Foxp3 + regulatory T cells. Nat Immunol 11(7):618–627. doi:10.1038/ni.1884

    CAS  PubMed  Google Scholar 

  • Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, Jinasena D, Sharma SM, McCadden EM, Getnet D, Drake CG, Liu JO, Ostrowski MC, Pardoll DM (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325(5944):1142–1146. doi:10.1126/science.1176077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    CAS  PubMed  Google Scholar 

  • Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663. doi:10.1002/eji.200838105

    CAS  PubMed  Google Scholar 

  • Polansky JK, Schreiber L, Thelemann C, Ludwig L, Krüger M, Baumgrass R, Cording S, Floess S, Hamann A, Huehn J (2010) Methylation matters: Binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med 88(10):1029–1040. doi:10.1007/s00109-010-0642-1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL (1993) Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 5(11):1461–1471

    CAS  PubMed  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138. doi:10.1084/jem.20080099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao S, Gerondakis S, Woltring D, Shannon MF (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol 170(7):3724–3731

    CAS  PubMed  Google Scholar 

  • Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Green MI, Tone M, Chen YH (2009) Development of Foxp3 + regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31:932–940. doi:10.1016/j.immuni.2009.10.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329(5999):1667–1671. doi:10.1126/science.1191996

    CAS  PubMed  Google Scholar 

  • Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, Leslie C, Shaffer SA, Goodlett DR, Rudensky AY (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13(10):1010–1019. doi:10.1038/ni.2402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY (2009) Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 10(11):1170–1177. doi:10.1038/ni.1795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bresatz S, Gargett T, Melville EL, Peng K, D’Andrea RJ, Glonek GG, Goodall GJ, Zola H, Shannon MF, Barry SC (2010) Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J Immunol 185(2):1071–1081. doi:10.4049/jimmunol.1000082

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. doi:10.1016/j.cell.2008.05.009

    CAS  PubMed  Google Scholar 

  • Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R, Neph S, Sabo P, Kim JM, Liao W, Li MO, Leslie C, Stamatoyannopoulos JA, Rudensky AY (2012a) Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151(1):153–166. doi:10.1016/j.cell.2012.06.053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY (2012b) Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150(1):29–38. doi:10.1016/j.cell.2012.05.031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato S, Sanjo H, Tsujimura T, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Takeuchi O, Akira S (2006) TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int Immunol 18(10):1405–1411. doi:10.1093/intimm/dxl082

    CAS  PubMed  Google Scholar 

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3 K, Akt, and mTOR. Proc Natl Acad Sci USA 105(22):7797–7802. doi:10.1073/pnas.0800928105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H (2012) Smad3 binding to the Foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J Exp Med 209(9):1529–1535. doi:10.1084/jem.20112646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israel A, Rajewsky K, Pasparakis M (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19(3):377–389

    CAS  PubMed  Google Scholar 

  • Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K (2004) Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci USA 101(13):4566–4571. doi:10.1073/pnas.0400885101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiber L, Pietzsch B, Floess S, Farah C, Jänsch L, Schmitz I, Huehn J (2014) The treg-specific demethylated region stabilizes Foxp3 expression independently of NF-kB signaling. PLoS ONE 9(2):e88318. doi:10.1371/journal.pone.0088318

  • Schuster M, Glauben R, Plaza-Sirvent C, Schreiber L, Annemann M, Floess S, Kuhl AA, Clayton LK, Sparwasser T, Schulze-Osthoff K, Pfeffer K, Huehn J, Siegmund B, Schmitz I (2012) IkappaB(NS) protein mediates regulatory T cell development via induction of the Foxp3 transcription factor. Immunity 37(6):998–1008. doi:10.1016/j.immuni.2012.08.023

    CAS  PubMed  Google Scholar 

  • Sekiya T, Kashiwagi I, Inoue N, Morita R, Hori S, Waldmann H, Rudensky AY, Ichinose H, Metzger D, Chambon P, Yoshimura A (2011) The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nat Commun 2:269. doi:10.1038/ncomms1272

    PubMed Central  PubMed  Google Scholar 

  • Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, Ichinose H, Metzger D, Chambon P, Yoshimura A (2013) Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 14(3):230–237. doi:10.1038/ni.2520

    CAS  PubMed  Google Scholar 

  • Sharma MD, Huang L, Choi JH, Lee EJ, Wilson JM, Lemos H, Pan F, Blazar BR, Pardoll DM, Mellor AL, Shi H, Munn DH (2013) An inherently bifunctional subset of Foxp3 + T helper cells is controlled by the transcription factor eos. Immunity 38(5):998–1012. doi:10.1016/j.immuni.2013.01.013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shevach EM (2000) Regulatory T cells in autoimmmunity. Annu Rev Immunol 18:423–449

    CAS  PubMed  Google Scholar 

  • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376. doi:10.1084/jem.20110278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    CAS  PubMed  Google Scholar 

  • Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y, Berezov A, Xu C, Gao Y, Li Z, Wu SL, Cai Z, Zhang H, Karger BL, Hancock WW, Wells AD, Zhou Z, Greene MI (2012) Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 1(6):665–675. doi:10.1016/j.celrep.2012.04.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH (2002) The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168(10):5024–5031

    CAS  PubMed  Google Scholar 

  • Strainic MG, Shevach EM, An F, Lin F, Medof ME (2013) Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3 + regulatory T cells. Nat Immunol 14(2):162–171. doi:10.1038/ni.2499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18(8):1197–1209. doi:10.1093/intimm/dxl060

    CAS  PubMed  Google Scholar 

  • Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, Ezoe S, Kanakura Y, Sato E, Fukumori Y, Karbach J, Jager E, Sakaguchi S (2013) Anti-CCR4 mAb selectively depletes effector-type Foxp3 +CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA. doi:10.1073/pnas.1316796110

    Google Scholar 

  • Sundrud MS, Rao A (2007) Regulatory T-cell gene expression: ChIP’ing away at Foxp3. Immunol Cell Biol 85(3):177–178. doi:10.1038/sj.icb.7100051

    CAS  PubMed  Google Scholar 

  • Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6(2):152–162

    CAS  PubMed  Google Scholar 

  • Teng MW, Swann JB, von Scheidt B, Sharkey J, Zerafa N, McLaughlin N, Yamaguchi T, Sakaguchi S, Darcy PK, Smyth MJ (2010) Multiple antitumor mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Res 70(7):2665–2674. doi:10.1158/0008-5472.CAN-09-1574

    CAS  PubMed  Google Scholar 

  • Tian L, Altin JA, Makaroff LE, Franckaert D, Cook MC, Goodnow CC, Dooley J, Liston A (2011) Foxp3 + regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis. Blood 118(7):1845–1853. doi:10.1182/blood-2011-04-346056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Duber S, Geffers R, Giehr P, Schallenberg S, Kretschmer K, Olek S, Walter J, Weiss S, Hori S, Hamann A, Huehn J (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T Cells within the Thymus. J Immunol. doi:10.4049/jimmunol.1203473

    PubMed  Google Scholar 

  • Toker A, Huehn J (2011) To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms. Sci Signal 4 (158):pe4. doi:10.1126/scisignal.2001783

  • Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9(2):194–202

    CAS  PubMed  Google Scholar 

  • Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+ FOXP3 - T cells by T cell receptor stimulation is TGF-beta-dependent but does not confer a regulatory phenotype. Blood 110(8):2983–2990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tubo NJ, Pagan AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, Huseby ES, Way SS, Jenkins MK (2013) Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153(4):785–796. doi:10.1016/j.cell.2013.04.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuteja G, Kaestner KH (2007) Forkhead transcription factors II. Cell 131(1):192. doi:10.1016/j.cell.2007.09.016

    CAS  PubMed  Google Scholar 

  • Vaeth M, Gogishvili T, Bopp T, Klein M, Berberich-Siebelt F, Gattenloehner S, Avots A, Sparwasser T, Grebe N, Schmitt E, Hunig T, Serfling E, Bodor J (2012) Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci USA 108(6):2480–2485. doi:10.1073/pnas.1009463108

    Google Scholar 

  • van Loosdregt J, Fleskens V, Tiemessen MM, Mokry M, van BR, Meerding J, Pals CE, Kurek D, Baert MR, Delemarre EM, Grone A, Koerkamp MJ, Sijts AJ, Nieuwenhuis EE, Maurice MM, van Es JH, Ten BD, Holstege FC, Staal FJ, Zaiss DM, Prakken BJ, Coffer PJ (2013a) Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39(2):298–310

    Google Scholar 

  • van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, Berkers CR, Barbi J, Grone A, Sijts AJ, Maurice MM, Kalkhoven E, Prakken BJ, Ovaa H, Pan F, Zaiss DM, Coffer PJ (2013b) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39(2):259–271

    PubMed Central  PubMed  Google Scholar 

  • Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+ Foxp3 + regulatory T cell development. J Immunol 181(5):3285–3290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vang KB, Yang J, Pagan AJ, Li LX, Wang J, Green JM, Beg AA, Farrar MA (2010) Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184(8):4074–4077. doi:10.4049/jimmunol.0903933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venuprasad K, Huang H, Harada Y, Elly C, Subramaniam M, Spelsberg T, Su J, Liu YC (2008) The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9(3):245–253. doi:10.1038/ni1564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L (2004) Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173(2):1444–1453

    CAS  PubMed  Google Scholar 

  • Visekruna A, Huber M, Hellhund A, Bothur E, Reinhard K, Bollig N, Schmidt N, Joeris T, Lohoff M, Steinhoff U (2010) c-Rel is crucial for the induction of Foxp3 + regulatory CD4+ T cells but not T(H)17 cells. Eur J Immunol 40(3):671–676. doi:10.1002/eji.200940260

    CAS  PubMed  Google Scholar 

  • Wan YY, Chi H, Xie M, Schneider MD, Flavell RA (2006) The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 7(8):851–858. doi:10.1038/ni1355

    CAS  PubMed  Google Scholar 

  • Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445(7129):766–770

    CAS  PubMed  Google Scholar 

  • Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35(3):337–348. doi:10.1016/j.immuni.2011.08.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhust CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ (2012) Neuropilin-1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3 + Treg cells. J Exp Med 209(10):1723–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20

    CAS  PubMed  Google Scholar 

  • Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8(3):277–284. doi:10.1038/ni1437

    CAS  PubMed  Google Scholar 

  • Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G, Ribeiro CH, Hall JA, Yagi R, Naik S, Bhairavabhotla R, Paul WE, Bosselut R, Wei G, Zhao K, Oukka M, Zhu J, Belkaid Y (2011) GATA3 controls Foxp3 + regulatory T cell fate during inflammation in mice. J Clin Invest 121(11):4503–4515. doi:10.1172/JCI57456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387

    CAS  PubMed  Google Scholar 

  • Xiong Y, Khanna S, Grzenda AL, Sarmento OF, Svingen PA, Lomberk GA, Urrutia RA, Faubion WA Jr (2012) Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem 287(41):34372–34385. doi:10.1074/jbc.M111.325332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W (2010) Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity 33(3):313–325. doi:10.1016/j.immuni.2010.09.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng XH, Jetten AM, Dong C (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1):44–56. doi:10.1016/j.immuni.2008.05.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, Hennighausen L, Wu C, O’Shea JJ (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109(10):4368–4375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356. doi:10.1038/nature07674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–812. doi:10.1038/nature08750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445(7130):936–940

    CAS  PubMed  Google Scholar 

  • Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR (2008a) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453(7192):236–240. doi:10.1038/nature06878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007. doi:10.1038/ni.1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA (2008b) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205(9):1983–1991. doi:10.1084/jem.20080707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Song X, Li B, Greene MI (2008c) FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol Res 42(1–3):19–28. doi:10.1007/s12026-008-8029-x

    CAS  PubMed  Google Scholar 

  • Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all colleagues whose articles could not be cited because of space limitation. Work in the author’s laboratories on this topic was supported by grants from Helmholtz Association of German Research Centers (HZ-NG-505 to M.F.), the German-Israeli Helmholtz Research School in Cancer Biology (to M.D.), the German Research Foundation (SFB738 to J.H.) and by a DKFZ/HZI joint grant (to M.F. and J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Feuerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delacher, M., Schreiber, L., Richards, D.M., Farah, C., Feuerer, M., Huehn, J. (2014). Transcriptional Control of Regulatory T cells. In: Ellmeier, W., Taniuchi, I. (eds) Transcriptional Control of Lineage Differentiation in Immune Cells. Current Topics in Microbiology and Immunology, vol 381. Springer, Cham. https://doi.org/10.1007/82_2014_373

Download citation

Publish with us

Policies and ethics