Clinical Safety and Pharmacology Trial

  • Christine MauckEmail author
  • Andrea Thurman
  • Jill Schwartz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 383)


Guidelines for establishing clinical safety of microbicides in early clinical studies have evolved significantly since the first trials. In addition, because of the difficulty of establishing efficacy of a microbicide prior to Phase III testing, there has been an increasing emphasis on establishing pharmacokinetic (PK)/pharmacodynamic (PD) relationships using genital samples collected in vivo in Phase I studies. A healthy pipeline is critical to success; however, it is unlikely that the majority of microbicide candidates will progress to clinical testing. Those that do enter clinical testing may have different mechanisms of action than early candidates. Given this, drug-specific modifications for early clinical assessment will need to be considered. These emerging issues associated with early clinical trials of microbicides will be reviewed, along with recommendations for future clinical safety and PK/PD evaluation.


Bacterial Vaginosis Secretory Leukocyte Protease Inhibitor Vaginal Tissue Lower Genital Tract Trichomonas Vaginalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdool Karim Q, Abdool Karim SS, Frohlich JA et al (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168–1174PubMedCentralPubMedCrossRefGoogle Scholar
  2. Abdool Karim SS, Richardson BA, Ramjee G et al (2011) Safety and effectiveness of BufferGel and 0.5% PRO2000 gel for the prevention of HIV infection in women. AIDS 25(7):957–966Google Scholar
  3. Abner SR, Guenthner PC, Guarner J et al (2005) A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J Infect Dis 192(9):1545–1556PubMedCrossRefGoogle Scholar
  4. Al-Harthi L, Spear GT, Hashemi FB et al (1998) A human immunodeficiency virus (HIV)-inducing factor from the female genital tract activates HIV-1 gene expression through the kappaB enhancer. J Infect Dis 178(5):1343–1351PubMedCrossRefGoogle Scholar
  5. Anton PA, Saunders T, Elliott J et al (2011) First phase 1 double-blind, placebo-controlled, randomized rectal microbicide trial using UC781 gel with a novel index of ex vivo efficacy. PLoS One 6(9):e23243PubMedCentralPubMedCrossRefGoogle Scholar
  6. Beer BE, Doncel GF, Krebs FC et al (2006) In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories. Antimicrob Agents Chemother 50(2):713–723PubMedCentralPubMedCrossRefGoogle Scholar
  7. Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85(1):97–104PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bourinbaiar AS, Fruhstorfer EC (1996) The efficacy of nonoxynol-9 from an in vitro point of view. AIDS 10(5):558–559PubMedCrossRefGoogle Scholar
  9. Cauci S, Culhane JF (2007) Modulation of vaginal immune response among pregnant women with bacterial vaginosis by Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, and yeast. Am J Obstet Gynecol 196(2):133 e1–e7Google Scholar
  10. Cocchi F, DeVico AL, Garzino-Demo A et al (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8 + T cells. Science 270(5243):1811–1815PubMedCrossRefGoogle Scholar
  11. Cole AM, Cole AL (2008) Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am J Reprod Immunol 59(1):27–34PubMedCrossRefGoogle Scholar
  12. Cummins JE Jr, Guarner J, Flowers L et al (2007) Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother 51(5):1770–1779PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dezzutti CS, James VN, Ramos A et al (2004) In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob Agents Chemother 48(10):3834–3844PubMedCentralPubMedCrossRefGoogle Scholar
  14. Feldblum PJ, Adeiga A, Bakare R, Wevill S, Lendvay A, Obadaki F, Olayemi MO, Wang L, Nanda K, Rountree W (2008) SAVVY vaginal gel (C31G) for prevention of HIV infection: a randomized controlled trial in Nigeria. PLoS One 3:e1474. doi: 10.1371/journal.pone.0001474 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fichorova RN, Lai JJ, Schwartz JL et al (2011) Baseline variation and associations between subject characteristics and five cytokine biomarkers of vaginal safety among healthy non-pregnant women in microbicide trials. Cytokine 55(1):134–140 Epub 2011 May 6PubMedCrossRefGoogle Scholar
  16. Fichorova RN, Tucker LD, Anderson DJ (2001) The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis 184(4):418–428PubMedCrossRefGoogle Scholar
  17. Fichorova RN, Trifonova RT, Gilbert RO et al (2006) Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 74(10):5773–5779PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fletcher PS, Elliott J, Grivel JC et al (2006a) Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides. AIDS 20(9):1237–1245PubMedCrossRefGoogle Scholar
  19. Fletcher PS, Wallace GS, Mesquita PMM et al (2006b) Candidate polyanion microbicides inhibit HIV-1 infection and dissemination pathways in human cervical explants. Retrovirology 3:46PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ghosh M, Fahey JV, Shen Z et al (2010) Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PLoS One 5(6):e11366PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gupta KM, Pearce SM, Poursaid AE et al (2008) Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1. J Pharm Sci 97(10):4228–4239PubMedCrossRefGoogle Scholar
  22. Hel Z, Stringer E, Mestecky J (2010) Sex steroid hormones, hormonal contraception, and the immunobiology of human immunodeficiency virus-1 infection. Endocr Rev 31(1):79–97PubMedCentralPubMedCrossRefGoogle Scholar
  23. Halpern V, Ogunsola F, Obunge O, Wang CH, Onyejepu N, Oduyebo O, Taylor D, McNeil L, Mehta N, Umo-Otong J, Otusanya S, Crucitti T, Abdellati S (2008) Effectiveness of cellulose sulfate vaginal gel for the prevention of HIV infection: results of a phase III trial in Nigeria. PLoS One 3:e3784. doi: 10.1371/journal.pone.0003784 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hendrix CW, Chen BA, Guddera V et al. (2013) Randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS One 8(1):e55013. doi: 10.1371/journal.pone.0055013
  25. Herold BC, Mesquita PM, Madan RP, Keller MJ (2011) Female genital tract secretions and semen impact the development of microbicides for the prevention of HIV and other sexually transmitted infections. Am J Reprod Immunol 65(3):325–333PubMedCentralPubMedCrossRefGoogle Scholar
  26. Herrera C, Cranage M, McGowan I et al (2009) Reverse transcriptase inhibitors as potential colorectal microbicides. Antimicrob Agents Chemother 53(5):1797–1807PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hillier SL, Moench T, Shattock R et al (2005) In vitro and in vivo: the story of nonoxynol 9. J Acquir Immune Defic Syndr 39(1):1–8PubMedCrossRefGoogle Scholar
  28. Hillier S (2008) HPTN 059: phase II expanded safety and acceptability study of the vaginal microbicide tenofovir 1% gel. Microbicides, New DelhiGoogle Scholar
  29. Holt JDS, Nuttall JP (2013) Preclinical Safety Evaluation. Current Topics in Microbiology and Immunology. doi:PubMedGoogle Scholar
  30. International Working Group on Vaginal Microbicides (1996) Recommendations for the development of vaginal microbicides. AIDS 10(8):1–6Google Scholar
  31. John M, Keller MJ, Fam EH et al (2005) Cervicovaginal secretions contribute to innate resistance to herpes simplex virus infection. J Infect Dis 192(10):1731–1740PubMedCrossRefGoogle Scholar
  32. Karim SS, Kashuba AD, Werner L, Karim QA (2011) Drug concentrations after topical and oral antiretroviral pre-exposure prophylaxis: implications for HIV prevention in women. Lancet 378(9787):279–281PubMedCentralPubMedCrossRefGoogle Scholar
  33. Keller MJ, Zerhouni-Layachi B, Cheshenko N et al (2006) PRO 2000 gel inhibits HIV and herpes simplex virus infection following vaginal application: a double-blind placebo-controlled trial. J Infect Dis 193(1):27–35PubMedCrossRefGoogle Scholar
  34. Keller MJ, Guzman E, Hazrati E et al (2007) PRO 2000 elicits a decline in genital tract immune mediators without compromising intrinsic antimicrobial activity. AIDS 21(4):467–476PubMedCrossRefGoogle Scholar
  35. Keller MJ, Mesquita PM, Torres NM et al (2010) Postcoital bioavailability and antiviral activity of 0.5% PRO 2000 gel: implications for future microbicide clinical trials. PLoS One 5(1):e8781Google Scholar
  36. Keller MJ, Madan RP, Torres NM et al (2011) A randomized trial to assess anti-HIV activity in female genital tract secretions and soluble mucosal immunity following application of 1% tenofovir gel. PLoS One 6(1):e16475PubMedCentralPubMedCrossRefGoogle Scholar
  37. Madan RP, Carpenter C, Fiedler T et al (2012) Altered biomarkers of mucosal immunity and reduced vaginal lactobacillus concentrations in sexually active female adolescents. PLoS One 7(7):e40415PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mauck C, Rosenberg Z, Van Damme L, International Working Group on Microbicides (2001) Recommendations for the clinical development of topical microbicides: an update. AIDS 15(7):857–868Google Scholar
  39. Mauck CK, Weiner DH, Lai JJ, Schwartz JL (2012) Colposcopy: still useful in microbicide safety trials? Sex Transm Dis 39(6):465–469PubMedCrossRefGoogle Scholar
  40. Mayer KH, Maslankowski LA, Gai F et al (2006) Safety and tolerability of tenofovir vaginal gel in abstinent and sexually active HIV-infected and uninfected women. AIDS 20(4):543–551PubMedCrossRefGoogle Scholar
  41. McClelland RS, Sangare L, Hassan WM et al (2007) Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis 195:698–702PubMedCrossRefGoogle Scholar
  42. McCormack S, Ramjee G, Kamali A et al (2010) PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 376(9749):1329–1337PubMedCentralPubMedCrossRefGoogle Scholar
  43. McGowan I, Tanner K, Elliott J et al (2012) Non-reproducibility of “snap-frozen” rectal biopsies for later use in (ex vivo) explant infectibility studies. AIDS Res Hum Retroviruses 28(11):1509–1512PubMedCentralPubMedCrossRefGoogle Scholar
  44. McGowan I, Hoesley C, Cranston RD et al (2013) A Phase 1 Randomized, Double Blind, Placebo Controlled Rectal Safety and Acceptability Study of Tenofovir 1% Gel (MTN-007). PLoS ONE 8(4):e60147. doi: 10.1371/journal.pone.0060147 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Morrison C, Fichorova R, Mauck C et al (2012) Biomarkers of cervical Inflammation and immunity associated with hormonal contraception, pregnancy and HIV-1 seroconversion. CROI, SeattleGoogle Scholar
  46. Moscicki AB, Kaul R, Ma Y et al (2012) Measurement of mucosal biomarkers in a Phase I trial of intravaginal 3% Star-Pharma LTD 7013 gel (VivaGel) to assess expanded safety. J Acquir Immune Defic Syndro 59(2):134–140CrossRefGoogle Scholar
  47. Nel AM, Smythe S, Young K et al (2009) Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women. J Acquir Immune Defic Syndr 1(4):416–423CrossRefGoogle Scholar
  48. Novak RM, Donoval BA, Graham PJ et al (2007) Cervicovaginal levels of lactoferrin, secretory leukocyte protease inhibitor, and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus (HIV)-seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin Vaccine Immunol 14(9):1102–1107PubMedCentralPubMedCrossRefGoogle Scholar
  49. Patel S, Hazrati E, Cheshenko N et al (2007) Seminal plasma reduces the effectiveness of topical polyanionic microbicides. J Infect Dis 196(9):1394–1402PubMedCrossRefGoogle Scholar
  50. Patterson K, Dumond J, Prince H et al (2011) Pharmacokinetics of TDF in blood plasma and cervicovaginal fluid of HIV + post-menopausal compared with pre-menopausal women. CROI University of North Carolina, Chapel HillGoogle Scholar
  51. Peterson L, Nanda K, Opoku BK, Ampofo WK, Owusu-Amoako M, Boakye AY, Rountree W, Troxler A, Dominik R, Roddy R, Dorflinger L (2007) SAVVY (C31G) gel for prevention of HIV infection in women: A Phase III, double-blind, randomized, placebo-controlled trial in Ghana. PLoS One 2:e1312. doi: 10.1371/journal.pone.0001312 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Poynten IM, Millwood IY, Falster MO et al (2009) The safety of candidate vaginal microbicides since nonoxynol-9: a sytematic review of published studies. AIDS 23:1245–1253PubMedCrossRefGoogle Scholar
  53. Robbins BL, Srinivas RV, Kim C et al (1998) Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl) adenine (PMPA), Bis(isopropyloxymethylcarbonyl)PMPA. Antimicrob Agents Chemother 42(3):612–617PubMedCentralPubMedGoogle Scholar
  54. Roberts L, Passmore J-A, Williamson C, Little F, Naranbhai V et al (2011). Genital tract inflammation in women participating in the CAPRISA TFV microbicide trial who became infected with HIV: A mechanism for breakthrough infection? Paper # 991 in 18th conference on retroviruses and opportunistic infections, 2/27–3/2, BostonGoogle Scholar
  55. Rohan LC, Moncla BJ, Kunjara Na Ayudhya RP et al (2010) In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide. PLoS One 5(2):e9310PubMedCentralPubMedCrossRefGoogle Scholar
  56. Rollenhagen C, Asin SN (2011) Enhanced HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women correlates with increased inflammatory responses. Mucosal Immunol 4(6):671–681PubMedCrossRefGoogle Scholar
  57. Romano J, Variano B, Coplan P et al (2009) Safety and availability of dapivirine (TMC120) delivered from an intravaginal ring. AIDS Res Hum Retroviruses 25(5):483–488PubMedCrossRefGoogle Scholar
  58. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322PubMedCrossRefGoogle Scholar
  59. Schwartz JL, Ballagh SA, Kwok C et al (2007) Fourteen-day safety and acceptability study of the universal placebo gel. Contraception 75(2):136–141PubMedCrossRefGoogle Scholar
  60. Schwartz JL, Poindexter A, Wheeless A, Mauck CK, Callahan MM (2009) Safety evaluation of 1% tenofovir gel in healthy men. Int J STD AIDS 20:384–386PubMedCrossRefGoogle Scholar
  61. Schwartz J, Doncel G, Asin S et al (2010) Pilot clinical pharmacokinetic and pharmacodynamic study of UC781 vaginal gel. Microbicides Pittsburgh, PAGoogle Scholar
  62. Schwartz JL, Rountree W, Kashuba AD et al (2011) A Multi-Compartment, Single and Multiple Dose Pharmacokinetic Study of the Vaginal Candidate Microbicide 1% Tenofovir Gel. PLoS ONE 6(10):e25974PubMedCentralPubMedCrossRefGoogle Scholar
  63. Shust GF, Cho S, Kim M et al (2010) Female genital tract secretions inhibit herpes simplex virus infection: correlation with soluble mucosal immune mediators and impact of hormonal contraception. Am J Reprod Immunol 63(2):110–119PubMedCrossRefGoogle Scholar
  64. Simhan HN, Anderson BL, Krohn MA et al (2007) Host immune consequences of asymptomatic Trichomonas vaginalis infection in pregnancy. Am J Obstet Gynecol 196(1):59 e1–e5Google Scholar
  65. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, Friedland B, Govender S, De Kock A, Cassim N, Palanee T, Dozier G, Maguire R, Lahteenmaki P (2008) Efficacy of Carraguard for prevention of HIV infection in women in South Africa: A randomized, double blind, placebo controlled trial. Lancet 372:1977–1987. doi: 10.1016/S0140-6736(08)61842-5 PubMedCrossRefGoogle Scholar
  66. Sokal DC, Karim QA, Sibeko S et al (2012) Safety of tenofovir gel, a vaginal microbicide, in South African women: results of the CAPRISA 004 Trial. Antivir Ther PMID 22914267Google Scholar
  67. Spear GT, al-Harthi L, Sha B et al (1997) A potent activator of HIV-1 replication is present in the genital tract of a subset of HIV-1-infected and uninfected women. AIDS 11(11):1319–1326Google Scholar
  68. Valore EV, Wiley DJ, Ganz T (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect Immun 74(10):5693–5702PubMedCentralPubMedCrossRefGoogle Scholar
  69. Van Der Pol B, Kwok C, Pierre-Louis B et al (2008) Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. J Infect Dis 197:548–554CrossRefGoogle Scholar
  70. van de Wijgert JH, Morrison CS, Brown J et al (2009) Disentangling contributions of reproductive tract infections to HIV acquisition in African Women. Sex Transm Dis 36:357–364PubMedCrossRefGoogle Scholar
  71. van de Wijgert JH, Morrison CS, Cornelisse P et al (2008) Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women. J Acquir Immune Defic Syndr 48:203–210PubMedCrossRefGoogle Scholar
  72. Venkataraman N, Cole AL, Svoboda P, Pohl J, Cole AM (2005) Cationic polypeptides are required for anti-HIV-1 activity of human vaginal fluid. J Immunol 175(11):7560–7567PubMedCrossRefGoogle Scholar
  73. Wira CR, Fahey JV, Ghosh M et al (2010) Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am J Reprod Immunol 63(6):544–565PubMedCrossRefGoogle Scholar
  74. Van Damme L, Ramjee G, Alary M et al (2002) Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: A randomised, controlled trial. Lancet 360:962–964CrossRefGoogle Scholar
  75. Van Damme L, Govinden R, Mirembe FM, Guedou F, Solomon S, Becker ML, Pradeep BS, Krishnan AK, Alary M, Pande B, Ramjee G, Deese J, Crucitti T, Taylor D (2008) Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med. 359:463–472. doi: 10.1056/NEJMoa0707957 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christine Mauck
    • 1
    Email author
  • Andrea Thurman
    • 2
  • Jill Schwartz
    • 1
  1. 1.CONRADArlingtonUSA
  2. 2.Department of Obstetrics and GynecologyCONRADNorfolkUSA

Personalised recommendations