Skip to main content

Facets of Small RNA-Mediated Regulation in Legionella pneumophila

  • Chapter
  • First Online:
Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.

The first two authors, Hana Trigui and Nilmini Mendis, have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zant A, Asare R, Graham J, Abu Kwaik Y (2006) Role for RpoS but not RelA of Legionella pneumophila in modulation of phago-some biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 74:3021–3026

    CAS  PubMed  Google Scholar 

  • Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64:432–448. doi:10.1007/s00018-006-6391-1

    CAS  PubMed  Google Scholar 

  • Altman E, Segal G (2008) The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190:1985–1996

    CAS  PubMed  Google Scholar 

  • Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53

    CAS  PubMed  Google Scholar 

  • Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G (1998) The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 17:6069–6075

    CAS  PubMed  Google Scholar 

  • Argaman L, Altuvia S (2000) fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J Mol Biol 300:1101–1112. doi:http://dx.doi.org/10.1006/jmbi.2000.3942

    Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    CAS  PubMed  Google Scholar 

  • Bachman M, Swanson M (2004) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72:2468–2476

    CAS  PubMed  Google Scholar 

  • Baker C, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44:1599–1610

    CAS  PubMed  Google Scholar 

  • Balasubramanian D, Vanderpool C (2013) New developments in post-transcriptional regulation of operons by small RNAs. RNA Biol 10:337–341

    Google Scholar 

  • Barrick JE (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784

    CAS  PubMed  Google Scholar 

  • Basineni SR, Madhugiri R, Kolmsee T, Hengge R, Klug G (2009) The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol 6:584–594

    CAS  PubMed  Google Scholar 

  • Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213. doi:10.1146/annurev-micro-090110-102946

    Google Scholar 

  • Beisel C, Storz G (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34:866–882. doi:10.1111/j.1574-6976.2010.00241

    CAS  PubMed  Google Scholar 

  • Benin AL, Benson RF, Besser RE (2002) Trends in Legionnaires’ disease, 1980–1998: declining mortality and new patterns of diagnosis. Clin Infect Dis 35:1039–1046. doi:10.1086/342903

    PubMed  Google Scholar 

  • Beyer D, Skripkin E, Wadzack J, Nierhaus K (1994) How the ribosome moves along the mRNA during protein synthesis. J Biol Chem 269:30713–30717

    CAS  PubMed  Google Scholar 

  • Blatt SP, Parkinson MD, Pace E, Hoffman P, Dolan D, Lauderdale P, Zajac RA, Melcher GP (1993) Nosocomial Legionnaires’ disease: aspiration as a primary mode of disease acquisition. Am J Med 95:16–22. doi:10.1016/0002-9343(93)90227-G

    CAS  PubMed  Google Scholar 

  • Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109

    CAS  PubMed  Google Scholar 

  • Butler JC, Breiman RF (1998) Legionnaires’ disease: clinical, epidemiological, and public health perspectives. Semin Respir Infect 13:84–89

    PubMed  Google Scholar 

  • Byrne B, Swanson M (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034

    CAS  PubMed  Google Scholar 

  • Cavanagh A, Klocko A, Liu X, Wassarman K (2008) Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ 70. Mol Microbiol 67:1242–1256

    Google Scholar 

  • Cazalet C, Rusniol C, Brüggemann H, Zidane N, Magnier A, Ma L et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173

    CAS  PubMed  Google Scholar 

  • Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez S et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968. doi:10.1126/science.1099776

    CAS  PubMed  Google Scholar 

  • Ding Y, Davis B, Waldor M (2004) Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53:345–354

    CAS  PubMed  Google Scholar 

  • Faucher SP, Shuman H (2011) Small regulatory RNA and Legionella pneumophila. Front Microbiol 2:98. doi:10.3389/fmicb.2011.00098

    CAS  PubMed  Google Scholar 

  • Faucher SP, Friedlander G, Livny J, Margalit H, Shuman H (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci 107:7533–7538. doi:10.1073/pnas.0911764107

    CAS  PubMed  Google Scholar 

  • Fettes P, Forsbach-Birk V, Lynch D, Marre R (2001) Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291:353–360. doi:10.1078/1438-4221-00141

    CAS  PubMed  Google Scholar 

  • Fields BS (1996) The molecular ecology of Legionellae. Trends Microbiol 4:286–290. doi:10.1016/0966-842X(96)10041-X

    CAS  PubMed  Google Scholar 

  • Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    PubMed  Google Scholar 

  • Forsbach-Birk V, McNealy T, Shi C, Lynch D, Marre R (2004) Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. Int J Med Microbiol 294:15–25. doi:10.1016/j.ijmm.2003.12.003

    CAS  PubMed  Google Scholar 

  • Franch T, Gerdes K (2000) U-turns and regulatory RNAs. Curr Opin Microbiol 3:159–164

    CAS  PubMed  Google Scholar 

  • Franze de Fernandez M, Eoyang L, August J (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219:588–590

    CAS  PubMed  Google Scholar 

  • Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, Sharrar RG, Harris J, Mallison GF, Martin SM, McDade JE, Shepard CC, Brachman PS (1977) Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297:1189–1197. doi:10.1056/NEJM197712012972201

    CAS  PubMed  Google Scholar 

  • Gal-Mor O, Segal G (2003) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919

    CAS  PubMed  Google Scholar 

  • Garcia-Calderon C, Garcia-Quintanilla M, Casadesus J, Ramos-Morales F (2005) Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151:579–588

    CAS  PubMed  Google Scholar 

  • Geissmann T, Touati D (2004) Hfq, a new chaperoning role: Binding to messenger RNA determines access for small RNA regulator. EMBO J 23:396–405

    CAS  PubMed  Google Scholar 

  • Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C (2011) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2:208. doi:10.3389/fmicb.2011.00208

    PubMed  Google Scholar 

  • Gonzalez-Fecha B, Demple B (1999) Role for the oxyS gene in regulation of intracellular hydrogen peroxide in Escherichia coli. J Bacteriol 181:3833–3836

    Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    CAS  PubMed  Google Scholar 

  • Gottesman S, Storz G (2010) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798. doi:10.1101/cshperspect.a003798

    Google Scholar 

  • Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harbor Symp Quant Biol 71:1–11

    CAS  PubMed  Google Scholar 

  • Hales L, Shuman H (1999) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181:4879–4889

    CAS  PubMed  Google Scholar 

  • Hammer B, Tateda E, Swanson M (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44:107–118

    CAS  PubMed  Google Scholar 

  • Hanrahan JP, Morse DL, Scharf VB, Debbie JG, Schmid GP, McKinney RM, Shayegani M (1987) A community hospital outbreak of Legionellosis: transmission by potable hot water. Am J Epidemiol 125:639–649

    CAS  PubMed  Google Scholar 

  • Heidtman M, Chen EJ, Moy M-Y, Isberg RR (2009) Large scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248

    CAS  PubMed  Google Scholar 

  • Hickey E, Cianciotto N (1994) Cloning and sequencing of the Legionella pneumophila fur gene. Gene 143:117–121

    CAS  PubMed  Google Scholar 

  • Hickey E, Cianciotto N (1997) An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 65:133–143

    CAS  PubMed  Google Scholar 

  • Horwitz MA (1983a) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331. doi:10.1084/jem.158.6.2108

    CAS  PubMed  Google Scholar 

  • Horwitz MA (1983b) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126. doi:10.1084/jem.158.6.2108

    CAS  PubMed  Google Scholar 

  • Hovel-Miner G, Pampou S, Faucher S, Clarke M, Morozova I, Morozov P, et al (2009) SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 191:2461–2473. doi:http://dx.doi.org/10.1128/ JB.01578-08

    Google Scholar 

  • Hussong D, Colwell R, O’Brien M, Weiss E, Pearson A, Weiner R, Burge W (1987) Viable Legionella pneumophila not detectable by culture on agar media. Bio-Technology 5:947–950

    Google Scholar 

  • Huttenhofer A, Noller H (1994) Footprinting mRNA–ribosome complexes with chemical probes. EMBO J 13:3892–3901

    CAS  PubMed  Google Scholar 

  • Hwang W, Arluison V, Hohng S (2011) Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 39:5131–5139

    CAS  PubMed  Google Scholar 

  • Jacques J, Jang S, Prévost K, Desnoyers G, Desmarais M, Imlay J, Massé E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62:1181–1190

    CAS  PubMed  Google Scholar 

  • Jarraud S, Descours G, Ginevra C, Lina G, Etienne J (2013) Identification of Legionella in clinical samples. Methods Mol Biol 954:27–56. doi:10.1007/978-1-62703-161-5_2

    CAS  PubMed  Google Scholar 

  • Jayakumar D, Early J, Steinman H (2012) Virulence phenotypes of Legionella pneumophila associated with non-coding RNA lpr0035. Infect Immun 80:4143–4153

    CAS  PubMed  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci 102:17136–17141

    CAS  PubMed  Google Scholar 

  • Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033

    CAS  PubMed  Google Scholar 

  • Klocko A, Wassarman K (2009) 6S RNA binding to Eσ 70requires a positively charged surface of σ 70 region 4.2. Mol Microbiol 73:152–164

    CAS  PubMed  Google Scholar 

  • Kulkarni P, Cui X, Williams J, Stevens A, Kulkarni R (2006) Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 34:3361–3369

    CAS  PubMed  Google Scholar 

  • Kullik I, Toledano MB, Tartaglia LA, Storz G (1995) Mutational analysis of the redox-sensitive transcriptional regulator OxyR: Regions important for oxidation and transcriptional activation. J Bacteriol 177:1275–1284

    CAS  PubMed  Google Scholar 

  • Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747. doi:10.1016/j.bbagrm.2013.02.013

    CAS  PubMed  Google Scholar 

  • Lapouge K, Schubert M, Allain F, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    CAS  PubMed  Google Scholar 

  • Lease R, Woodson S (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223

    CAS  PubMed  Google Scholar 

  • Leblanc JJ, Brassinga AKC, Ewann F, Davidson RJ, Hoffman PS (2008) An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the Alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol 190:3444–3455

    CAS  PubMed  Google Scholar 

  • Lenz D, Mok K, Lilley B, Kulkarni R, Wingreen N, Bassler B (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    CAS  PubMed  Google Scholar 

  • Link T, Valentin-Hansen P, Brennan R (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci 106:19292–19297

    CAS  PubMed  Google Scholar 

  • Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G (2008) The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154:16–29

    CAS  PubMed  Google Scholar 

  • Lynch D, Fieser N, Gloggler K, Forsbach-Birk V, Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248

    CAS  PubMed  Google Scholar 

  • Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci 95:12462–12467. doi:10.1073/pnas.95.21.12462

    CAS  PubMed  Google Scholar 

  • Majdalani N, Chen S, Murrow J, St. John K, Gottesman S (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39:1382–1394

    Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826

    CAS  PubMed  Google Scholar 

  • Maki K, Morita T, Otaka H, Aiba H (2010) A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Mol Microbiol 76:782–792

    CAS  PubMed  Google Scholar 

  • Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29:3094–3107

    CAS  PubMed  Google Scholar 

  • Marston BJ, Lipman HB, Breiman RF (1994) Surveillance for Legionnaires’ disease: risk factors for morbidity and mortality. Arch Int Med 154:2417–2422. doi:10.1001/archinte.1994.00420210049006

    Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci 99:4620–4625

    PubMed  Google Scholar 

  • Massé E, Escorcia F, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    PubMed  Google Scholar 

  • Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971

    Google Scholar 

  • Massé E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10:140–145

    PubMed  Google Scholar 

  • McCullen C, Benhammou J, Majdalani N, Gottesman S (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192:5559–5571

    CAS  PubMed  Google Scholar 

  • McNealy T, Forsbach-Birk V, Shi C, Marre R (2005) The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and inter-acts with the global regulator CsrA. J Bacteriol 187:1527–1532

    CAS  PubMed  Google Scholar 

  • Mizuno T, Chou M, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci 81:1966–1970

    CAS  PubMed  Google Scholar 

  • Møller T, Franch T, Hojrup P, Keene D, Bachinger H, Brennan R, Valentin-Hansen P (2002) Hfq: a bacterial Sm-like protein that mediates RNA–RNA interaction. Mol Cell 9:23–30

    PubMed  Google Scholar 

  • Molofsky A, Swanson M (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461

    CAS  PubMed  Google Scholar 

  • Molofsky A, Swanson M (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40

    CAS  PubMed  Google Scholar 

  • Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial non-coding RNAs. Genes Dev 19:2176–2186

    CAS  PubMed  Google Scholar 

  • Novick RP, Geisinger E (2008) Quorum sensing in Staphylococci. Annu Rev Genet 42:541–564. doi:10.1146/annurev.genet.42.110807.091640

    CAS  PubMed  Google Scholar 

  • Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. App Env Microbiol 69:2540–2547

    CAS  Google Scholar 

  • Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host & Microbe 8:116–127. doi:10.1016/j.chom.2010.06.008

    CAS  Google Scholar 

  • Pitre CAJ, Tanner JR, Patel P, Brassinga AKC (2013) Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology 159:475–492. doi:10.1099/mic.0.062117-0

    CAS  PubMed  Google Scholar 

  • Rasis M, Segal G (2009) The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72:995–1010. doi:10.1111/j.1365-2958.2009.06705.x

    CAS  PubMed  Google Scholar 

  • Reimer AR, Au S, Schindle S, Bernard KA (2010) Legionella pneumophila monoclonal antibody subgroups and DNA sequence types isolated in Canada between 1981 and 2009: Laboratory Component of National Surveillance. Eur J Clin Microbiol Infect Dis 29:191–205

    CAS  PubMed  Google Scholar 

  • Rogers J, Keevil C (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. App Env Microbiol 58:2326–2330

    CAS  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    CAS  PubMed  Google Scholar 

  • Romeo T, Gong M, Liu M, Brun-Zinkernagel A (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 15:4744–4755

    Google Scholar 

  • Sahr T, Brüggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C (2009) Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72:741–762

    CAS  PubMed  Google Scholar 

  • Sahr T, Rusniok C, Dervins-Ravault D, Sismeiro O, Coppee J, Buchrieser C (2012) Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 9:503–519

    CAS  PubMed  Google Scholar 

  • Salim NN, Feig AL (2010) An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PLoS One 5:e13028

    PubMed  Google Scholar 

  • Salvail H, Lanthier-Bourbonnais P, Sobota J, Caza M, Benjamin J, Mendieta M, Lepine F, Dozois C, Imlay J, Massé E (2010) A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci 107:15223–15228

    CAS  PubMed  Google Scholar 

  • Sankar P, Lee JH, Shanmugam KT (1988) Gene-product relationships of fhlA and fdv genes of Escherichia coli. J Bacteriol 195:5440–5445

    Google Scholar 

  • Schlensog V, Böck A (1990) Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 4:1319–1327. doi:10.1111/j.1365-2958.1990.tb00711.x

    CAS  PubMed  Google Scholar 

  • Schumacher M, Pearson R, Møller T, Valentin-Hansen P, Brennan R (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm-like protein. EMBO J 21:3546–3556

    CAS  PubMed  Google Scholar 

  • Segal G, Russo J, Shuman H (1999) Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34:799–809

    CAS  PubMed  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stdler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. doi:10.1038/nature08756

    CAS  PubMed  Google Scholar 

  • Shi C, Forsbach-Birk V, Marre R, McNealy T (2006) The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24

    CAS  PubMed  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691

    CAS  PubMed  Google Scholar 

  • Sittka A, Pfeiffer V, Tedin K, Vogel J (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63:193–217

    CAS  PubMed  Google Scholar 

  • Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000

    CAS  PubMed  Google Scholar 

  • Sobrero P, Valverde C (2012) The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38:276–299. doi:10.3109/1040841X.2012.664540

    CAS  PubMed  Google Scholar 

  • Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, Zhu J, Camilli A, Johansson J, Vogel J, Wai S (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70:100–111

    CAS  PubMed  Google Scholar 

  • Sonnleitner E, Haas D (2011) Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91:63–79

    CAS  PubMed  Google Scholar 

  • Soper T, Mandin P, Majdalani N, Gottesman S, Woodson S (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci 107:9602–9607

    CAS  PubMed  Google Scholar 

  • Stone B, Abu Kwaik Y (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402

    CAS  PubMed  Google Scholar 

  • Storz G, Tartaglia L, Ames B (1990) The OxyR regulon. Antonie van Leeuwenhoek 58:157–161. doi:10.1007/BF00548927

    CAS  PubMed  Google Scholar 

  • Stougaard P, Molin S, Nordström K (1981) RNAs involved in copy-number control and incompatibility of plasmid R1. Proc Natl Acad Sci 78:6008–6012

    CAS  PubMed  Google Scholar 

  • Swanson MS, Hammer BK (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613

    CAS  PubMed  Google Scholar 

  • Trigui H, Dudyk P, Sum J, Shuman H, Faucher S (2013) Analysis of the transcriptome of Legionella pneumophila hfq mutant reveals a new mobile genetic element. Microbiology. doi:10.1099.mic.0.067983.0

    PubMed  Google Scholar 

  • Trotochaud A, Wassarman K (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12:313–319

    CAS  PubMed  Google Scholar 

  • Tsui H, Leung H, Winkler M (1994) Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13:35–49

    CAS  PubMed  Google Scholar 

  • Udekwu K, Darfeuille F, Vogel J, Reimegard J, Holmqvist E, Wagner E (2005) Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev 19:2355–2366

    CAS  PubMed  Google Scholar 

  • Updegrove T, Wartell R (2011) The influence of Escherichia coli Hfq mutations on RNA binding and sRNA∙mRNA duplex formation in rpoS riboregulation. Biochim Biophys Acta 1809:532–540

    CAS  PubMed  Google Scholar 

  • Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379

    CAS  PubMed  Google Scholar 

  • Viswanathan V, Edelstein P, Pope C, Cianciotto N (2000) The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68:1069–1079

    CAS  PubMed  Google Scholar 

  • Vogel JP, Isberg RR (1999) Cell biology of Legionella pneumophila. Curr Opin Microbiol 2:30–34. doi:10.1016/S1369-5274(99)80005-8

    CAS  PubMed  Google Scholar 

  • Wadler C, Vanderpool C (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci 104:20454–20459

    CAS  PubMed  Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesion of Escherichia coli. Mol Microbiol 56:1648–1663

    CAS  PubMed  Google Scholar 

  • Wassarman K (2007) 6S RNA: a regulator of transcription. Mol Microbiol 65:1425–1431

    CAS  PubMed  Google Scholar 

  • Wassarman K, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    CAS  PubMed  Google Scholar 

  • Wassarman KM, Zhang A, Storz G (1999) Small RNAs in Escherichia coli. Trends Microbiol 7:37–45

    CAS  PubMed  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    CAS  PubMed  Google Scholar 

  • Weilbacher T, Suzuki K, Dubey A, Wang X, Gudapaty S, Morozov I, Baker C, Georgellis D, Babitzke P, Romeo T (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657–670

    CAS  PubMed  Google Scholar 

  • Weissenmayer B, Prendergast J, Lohan A, Loftus B (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6:e17570

    CAS  PubMed  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797

    Google Scholar 

  • Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E, Ohnishi M, Watanabe H (2011) Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 8:1953–1965

    Google Scholar 

  • Yiallouros P, Papadouri T, Karaoli C, Papamichael E, Zeniou M, Pieridou-Bagatzouni D, Papageorgiou GT, Pissarides N, Harrison TG, Hadjidemetriou A (2013) First outbreak of nosocomial Legionella infection in term neonates caused by a cold mist ultrasonic humidifier. Clin Infec Dis 57:48–56. doi:10.103/cid/cit176

    Google Scholar 

  • Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired Legionellosis: an international collaborative survey. J Infec Dis 186:127–128. doi:10.1086/341087

    Google Scholar 

  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Molec Cell 9:11–22. doi:10.1016/S1097-2765(01)00437-3

    PubMed  Google Scholar 

  • Zhang A, Wassarman K, Rosenow C, Tjaden B, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    CAS  PubMed  Google Scholar 

  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA Microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570

    CAS  PubMed  Google Scholar 

  • Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E, Feldman M, Segal G (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is supported by FRQNT Établissement de nouveaux chercheurs grant 2013-NC-164725 and NSERC Discovery grant 418289-2012. We would like to thank the reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien P. Faucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trigui, H., Mendis, N., Li, L., Saad, M., Faucher, S.P. (2013). Facets of Small RNA-Mediated Regulation in Legionella pneumophila . In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_347

Download citation

Publish with us

Policies and ethics