Facets of Small RNA-Mediated Regulation in Legionella pneumophila

  • Hana Trigui
  • Nilmini Mendis
  • Laam Li
  • Mariam Saad
  • Sebastien P. Faucher
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 376)


Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.


Ribosomal Binding Site Small Regulatory RNAs mRNA Interaction Translation Initiation Region Pontiac Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our research is supported by FRQNT Établissement de nouveaux chercheurs grant 2013-NC-164725 and NSERC Discovery grant 418289-2012. We would like to thank the reviewers for helpful suggestions.


  1. Abu-Zant A, Asare R, Graham J, Abu Kwaik Y (2006) Role for RpoS but not RelA of Legionella pneumophila in modulation of phago-some biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 74:3021–3026PubMedGoogle Scholar
  2. Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64:432–448. doi: 10.1007/s00018-006-6391-1 PubMedGoogle Scholar
  3. Altman E, Segal G (2008) The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190:1985–1996PubMedGoogle Scholar
  4. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53PubMedGoogle Scholar
  5. Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G (1998) The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 17:6069–6075PubMedGoogle Scholar
  6. Argaman L, Altuvia S (2000) fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J Mol Biol 300:1101–1112. doi: Google Scholar
  7. Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163PubMedGoogle Scholar
  8. Bachman M, Swanson M (2004) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72:2468–2476PubMedGoogle Scholar
  9. Baker C, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44:1599–1610PubMedGoogle Scholar
  10. Balasubramanian D, Vanderpool C (2013) New developments in post-transcriptional regulation of operons by small RNAs. RNA Biol 10:337–341Google Scholar
  11. Barrick JE (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784PubMedGoogle Scholar
  12. Basineni SR, Madhugiri R, Kolmsee T, Hengge R, Klug G (2009) The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol 6:584–594PubMedGoogle Scholar
  13. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213. doi: 10.1146/annurev-micro-090110-102946 Google Scholar
  14. Beisel C, Storz G (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34:866–882. doi: 10.1111/j.1574-6976.2010.00241 PubMedGoogle Scholar
  15. Benin AL, Benson RF, Besser RE (2002) Trends in Legionnaires’ disease, 1980–1998: declining mortality and new patterns of diagnosis. Clin Infect Dis 35:1039–1046. doi: 10.1086/342903 PubMedGoogle Scholar
  16. Beyer D, Skripkin E, Wadzack J, Nierhaus K (1994) How the ribosome moves along the mRNA during protein synthesis. J Biol Chem 269:30713–30717PubMedGoogle Scholar
  17. Blatt SP, Parkinson MD, Pace E, Hoffman P, Dolan D, Lauderdale P, Zajac RA, Melcher GP (1993) Nosocomial Legionnaires’ disease: aspiration as a primary mode of disease acquisition. Am J Med 95:16–22. doi: 10.1016/0002-9343(93)90227-G PubMedGoogle Scholar
  18. Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109PubMedGoogle Scholar
  19. Butler JC, Breiman RF (1998) Legionnaires’ disease: clinical, epidemiological, and public health perspectives. Semin Respir Infect 13:84–89PubMedGoogle Scholar
  20. Byrne B, Swanson M (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034PubMedGoogle Scholar
  21. Cavanagh A, Klocko A, Liu X, Wassarman K (2008) Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ 70. Mol Microbiol 67:1242–1256Google Scholar
  22. Cazalet C, Rusniol C, Brüggemann H, Zidane N, Magnier A, Ma L et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173PubMedGoogle Scholar
  23. Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez S et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968. doi: 10.1126/science.1099776 PubMedGoogle Scholar
  24. Ding Y, Davis B, Waldor M (2004) Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53:345–354PubMedGoogle Scholar
  25. Faucher SP, Shuman H (2011) Small regulatory RNA and Legionella pneumophila. Front Microbiol 2:98. doi: 10.3389/fmicb.2011.00098 PubMedGoogle Scholar
  26. Faucher SP, Friedlander G, Livny J, Margalit H, Shuman H (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci 107:7533–7538. doi: 10.1073/pnas.0911764107 PubMedGoogle Scholar
  27. Fettes P, Forsbach-Birk V, Lynch D, Marre R (2001) Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291:353–360. doi: 10.1078/1438-4221-00141 PubMedGoogle Scholar
  28. Fields BS (1996) The molecular ecology of Legionellae. Trends Microbiol 4:286–290. doi: 10.1016/0966-842X(96)10041-X PubMedGoogle Scholar
  29. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526PubMedGoogle Scholar
  30. Forsbach-Birk V, McNealy T, Shi C, Lynch D, Marre R (2004) Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. Int J Med Microbiol 294:15–25. doi: 10.1016/j.ijmm.2003.12.003 PubMedGoogle Scholar
  31. Franch T, Gerdes K (2000) U-turns and regulatory RNAs. Curr Opin Microbiol 3:159–164PubMedGoogle Scholar
  32. Franze de Fernandez M, Eoyang L, August J (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219:588–590PubMedGoogle Scholar
  33. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, Sharrar RG, Harris J, Mallison GF, Martin SM, McDade JE, Shepard CC, Brachman PS (1977) Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297:1189–1197. doi: 10.1056/NEJM197712012972201 PubMedGoogle Scholar
  34. Gal-Mor O, Segal G (2003) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919PubMedGoogle Scholar
  35. Garcia-Calderon C, Garcia-Quintanilla M, Casadesus J, Ramos-Morales F (2005) Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151:579–588PubMedGoogle Scholar
  36. Geissmann T, Touati D (2004) Hfq, a new chaperoning role: Binding to messenger RNA determines access for small RNA regulator. EMBO J 23:396–405PubMedGoogle Scholar
  37. Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C (2011) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2:208. doi: 10.3389/fmicb.2011.00208 PubMedGoogle Scholar
  38. Gonzalez-Fecha B, Demple B (1999) Role for the oxyS gene in regulation of intracellular hydrogen peroxide in Escherichia coli. J Bacteriol 181:3833–3836Google Scholar
  39. Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328PubMedGoogle Scholar
  40. Gottesman S, Storz G (2010) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798. doi: 10.1101/cshperspect.a003798 Google Scholar
  41. Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harbor Symp Quant Biol 71:1–11PubMedGoogle Scholar
  42. Hales L, Shuman H (1999) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181:4879–4889PubMedGoogle Scholar
  43. Hammer B, Tateda E, Swanson M (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44:107–118PubMedGoogle Scholar
  44. Hanrahan JP, Morse DL, Scharf VB, Debbie JG, Schmid GP, McKinney RM, Shayegani M (1987) A community hospital outbreak of Legionellosis: transmission by potable hot water. Am J Epidemiol 125:639–649PubMedGoogle Scholar
  45. Heidtman M, Chen EJ, Moy M-Y, Isberg RR (2009) Large scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248PubMedGoogle Scholar
  46. Hickey E, Cianciotto N (1994) Cloning and sequencing of the Legionella pneumophila fur gene. Gene 143:117–121PubMedGoogle Scholar
  47. Hickey E, Cianciotto N (1997) An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 65:133–143PubMedGoogle Scholar
  48. Horwitz MA (1983a) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331. doi: 10.1084/jem.158.6.2108 PubMedGoogle Scholar
  49. Horwitz MA (1983b) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126. doi: 10.1084/jem.158.6.2108 PubMedGoogle Scholar
  50. Hovel-Miner G, Pampou S, Faucher S, Clarke M, Morozova I, Morozov P, et al (2009) SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 191:2461–2473. doi: JB.01578-08Google Scholar
  51. Hussong D, Colwell R, O’Brien M, Weiss E, Pearson A, Weiner R, Burge W (1987) Viable Legionella pneumophila not detectable by culture on agar media. Bio-Technology 5:947–950Google Scholar
  52. Huttenhofer A, Noller H (1994) Footprinting mRNA–ribosome complexes with chemical probes. EMBO J 13:3892–3901PubMedGoogle Scholar
  53. Hwang W, Arluison V, Hohng S (2011) Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 39:5131–5139PubMedGoogle Scholar
  54. Jacques J, Jang S, Prévost K, Desnoyers G, Desmarais M, Imlay J, Massé E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62:1181–1190PubMedGoogle Scholar
  55. Jarraud S, Descours G, Ginevra C, Lina G, Etienne J (2013) Identification of Legionella in clinical samples. Methods Mol Biol 954:27–56. doi: 10.1007/978-1-62703-161-5_2 PubMedGoogle Scholar
  56. Jayakumar D, Early J, Steinman H (2012) Virulence phenotypes of Legionella pneumophila associated with non-coding RNA lpr0035. Infect Immun 80:4143–4153PubMedGoogle Scholar
  57. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci 102:17136–17141PubMedGoogle Scholar
  58. Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033PubMedGoogle Scholar
  59. Klocko A, Wassarman K (2009) 6S RNA binding to Eσ 70requires a positively charged surface of σ 70 region 4.2. Mol Microbiol 73:152–164PubMedGoogle Scholar
  60. Kulkarni P, Cui X, Williams J, Stevens A, Kulkarni R (2006) Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 34:3361–3369PubMedGoogle Scholar
  61. Kullik I, Toledano MB, Tartaglia LA, Storz G (1995) Mutational analysis of the redox-sensitive transcriptional regulator OxyR: Regions important for oxidation and transcriptional activation. J Bacteriol 177:1275–1284PubMedGoogle Scholar
  62. Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747. doi: 10.1016/j.bbagrm.2013.02.013 PubMedGoogle Scholar
  63. Lapouge K, Schubert M, Allain F, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253PubMedGoogle Scholar
  64. Lease R, Woodson S (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223PubMedGoogle Scholar
  65. Leblanc JJ, Brassinga AKC, Ewann F, Davidson RJ, Hoffman PS (2008) An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the Alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol 190:3444–3455PubMedGoogle Scholar
  66. Lenz D, Mok K, Lilley B, Kulkarni R, Wingreen N, Bassler B (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82PubMedGoogle Scholar
  67. Link T, Valentin-Hansen P, Brennan R (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci 106:19292–19297PubMedGoogle Scholar
  68. Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G (2008) The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154:16–29PubMedGoogle Scholar
  69. Lynch D, Fieser N, Gloggler K, Forsbach-Birk V, Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248PubMedGoogle Scholar
  70. Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci 95:12462–12467. doi: 10.1073/pnas.95.21.12462 PubMedGoogle Scholar
  71. Majdalani N, Chen S, Murrow J, St. John K, Gottesman S (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39:1382–1394Google Scholar
  72. Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826PubMedGoogle Scholar
  73. Maki K, Morita T, Otaka H, Aiba H (2010) A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Mol Microbiol 76:782–792PubMedGoogle Scholar
  74. Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29:3094–3107PubMedGoogle Scholar
  75. Marston BJ, Lipman HB, Breiman RF (1994) Surveillance for Legionnaires’ disease: risk factors for morbidity and mortality. Arch Int Med 154:2417–2422. doi: 10.1001/archinte.1994.00420210049006 Google Scholar
  76. Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci 99:4620–4625PubMedGoogle Scholar
  77. Massé E, Escorcia F, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383PubMedGoogle Scholar
  78. Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971Google Scholar
  79. Massé E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10:140–145PubMedGoogle Scholar
  80. McCullen C, Benhammou J, Majdalani N, Gottesman S (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192:5559–5571PubMedGoogle Scholar
  81. McNealy T, Forsbach-Birk V, Shi C, Marre R (2005) The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and inter-acts with the global regulator CsrA. J Bacteriol 187:1527–1532PubMedGoogle Scholar
  82. Mizuno T, Chou M, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci 81:1966–1970PubMedGoogle Scholar
  83. Møller T, Franch T, Hojrup P, Keene D, Bachinger H, Brennan R, Valentin-Hansen P (2002) Hfq: a bacterial Sm-like protein that mediates RNA–RNA interaction. Mol Cell 9:23–30PubMedGoogle Scholar
  84. Molofsky A, Swanson M (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461PubMedGoogle Scholar
  85. Molofsky A, Swanson M (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40PubMedGoogle Scholar
  86. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial non-coding RNAs. Genes Dev 19:2176–2186PubMedGoogle Scholar
  87. Novick RP, Geisinger E (2008) Quorum sensing in Staphylococci. Annu Rev Genet 42:541–564. doi: 10.1146/annurev.genet.42.110807.091640 PubMedGoogle Scholar
  88. Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. App Env Microbiol 69:2540–2547Google Scholar
  89. Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host & Microbe 8:116–127. doi: 10.1016/j.chom.2010.06.008 Google Scholar
  90. Pitre CAJ, Tanner JR, Patel P, Brassinga AKC (2013) Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology 159:475–492. doi: 10.1099/mic.0.062117-0 PubMedGoogle Scholar
  91. Rasis M, Segal G (2009) The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72:995–1010. doi: 10.1111/j.1365-2958.2009.06705.x PubMedGoogle Scholar
  92. Reimer AR, Au S, Schindle S, Bernard KA (2010) Legionella pneumophila monoclonal antibody subgroups and DNA sequence types isolated in Canada between 1981 and 2009: Laboratory Component of National Surveillance. Eur J Clin Microbiol Infect Dis 29:191–205PubMedGoogle Scholar
  93. Rogers J, Keevil C (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. App Env Microbiol 58:2326–2330Google Scholar
  94. Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330PubMedGoogle Scholar
  95. Romeo T, Gong M, Liu M, Brun-Zinkernagel A (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 15:4744–4755Google Scholar
  96. Sahr T, Brüggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C (2009) Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72:741–762PubMedGoogle Scholar
  97. Sahr T, Rusniok C, Dervins-Ravault D, Sismeiro O, Coppee J, Buchrieser C (2012) Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 9:503–519PubMedGoogle Scholar
  98. Salim NN, Feig AL (2010) An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PLoS One 5:e13028PubMedGoogle Scholar
  99. Salvail H, Lanthier-Bourbonnais P, Sobota J, Caza M, Benjamin J, Mendieta M, Lepine F, Dozois C, Imlay J, Massé E (2010) A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci 107:15223–15228PubMedGoogle Scholar
  100. Sankar P, Lee JH, Shanmugam KT (1988) Gene-product relationships of fhlA and fdv genes of Escherichia coli. J Bacteriol 195:5440–5445Google Scholar
  101. Schlensog V, Böck A (1990) Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 4:1319–1327. doi: 10.1111/j.1365-2958.1990.tb00711.x PubMedGoogle Scholar
  102. Schumacher M, Pearson R, Møller T, Valentin-Hansen P, Brennan R (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm-like protein. EMBO J 21:3546–3556PubMedGoogle Scholar
  103. Segal G, Russo J, Shuman H (1999) Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34:799–809PubMedGoogle Scholar
  104. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stdler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. doi: 10.1038/nature08756 PubMedGoogle Scholar
  105. Shi C, Forsbach-Birk V, Marre R, McNealy T (2006) The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24PubMedGoogle Scholar
  106. Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691PubMedGoogle Scholar
  107. Sittka A, Pfeiffer V, Tedin K, Vogel J (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63:193–217PubMedGoogle Scholar
  108. Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000PubMedGoogle Scholar
  109. Sobrero P, Valverde C (2012) The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38:276–299. doi: 10.3109/1040841X.2012.664540 PubMedGoogle Scholar
  110. Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, Zhu J, Camilli A, Johansson J, Vogel J, Wai S (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70:100–111PubMedGoogle Scholar
  111. Sonnleitner E, Haas D (2011) Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91:63–79PubMedGoogle Scholar
  112. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson S (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci 107:9602–9607PubMedGoogle Scholar
  113. Stone B, Abu Kwaik Y (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402PubMedGoogle Scholar
  114. Storz G, Tartaglia L, Ames B (1990) The OxyR regulon. Antonie van Leeuwenhoek 58:157–161. doi: 10.1007/BF00548927 PubMedGoogle Scholar
  115. Stougaard P, Molin S, Nordström K (1981) RNAs involved in copy-number control and incompatibility of plasmid R1. Proc Natl Acad Sci 78:6008–6012PubMedGoogle Scholar
  116. Swanson MS, Hammer BK (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613PubMedGoogle Scholar
  117. Trigui H, Dudyk P, Sum J, Shuman H, Faucher S (2013) Analysis of the transcriptome of Legionella pneumophila hfq mutant reveals a new mobile genetic element. Microbiology. doi: 10.1099.mic.0.067983.0 PubMedGoogle Scholar
  118. Trotochaud A, Wassarman K (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12:313–319PubMedGoogle Scholar
  119. Tsui H, Leung H, Winkler M (1994) Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13:35–49PubMedGoogle Scholar
  120. Udekwu K, Darfeuille F, Vogel J, Reimegard J, Holmqvist E, Wagner E (2005) Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev 19:2355–2366PubMedGoogle Scholar
  121. Updegrove T, Wartell R (2011) The influence of Escherichia coli Hfq mutations on RNA binding and sRNA∙mRNA duplex formation in rpoS riboregulation. Biochim Biophys Acta 1809:532–540PubMedGoogle Scholar
  122. Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379PubMedGoogle Scholar
  123. Viswanathan V, Edelstein P, Pope C, Cianciotto N (2000) The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68:1069–1079PubMedGoogle Scholar
  124. Vogel JP, Isberg RR (1999) Cell biology of Legionella pneumophila. Curr Opin Microbiol 2:30–34. doi: 10.1016/S1369-5274(99)80005-8 PubMedGoogle Scholar
  125. Wadler C, Vanderpool C (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci 104:20454–20459PubMedGoogle Scholar
  126. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesion of Escherichia coli. Mol Microbiol 56:1648–1663PubMedGoogle Scholar
  127. Wassarman K (2007) 6S RNA: a regulator of transcription. Mol Microbiol 65:1425–1431PubMedGoogle Scholar
  128. Wassarman K, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623PubMedGoogle Scholar
  129. Wassarman KM, Zhang A, Storz G (1999) Small RNAs in Escherichia coli. Trends Microbiol 7:37–45PubMedGoogle Scholar
  130. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628PubMedGoogle Scholar
  131. Weilbacher T, Suzuki K, Dubey A, Wang X, Gudapaty S, Morozov I, Baker C, Georgellis D, Babitzke P, Romeo T (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657–670PubMedGoogle Scholar
  132. Weissenmayer B, Prendergast J, Lohan A, Loftus B (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6:e17570PubMedGoogle Scholar
  133. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797Google Scholar
  134. Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E, Ohnishi M, Watanabe H (2011) Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 8:1953–1965Google Scholar
  135. Yiallouros P, Papadouri T, Karaoli C, Papamichael E, Zeniou M, Pieridou-Bagatzouni D, Papageorgiou GT, Pissarides N, Harrison TG, Hadjidemetriou A (2013) First outbreak of nosocomial Legionella infection in term neonates caused by a cold mist ultrasonic humidifier. Clin Infec Dis 57:48–56. doi: 10.103/cid/cit176 Google Scholar
  136. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired Legionellosis: an international collaborative survey. J Infec Dis 186:127–128. doi: 10.1086/341087 Google Scholar
  137. Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Molec Cell 9:11–22. doi: 10.1016/S1097-2765(01)00437-3 PubMedGoogle Scholar
  138. Zhang A, Wassarman K, Rosenow C, Tjaden B, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124PubMedGoogle Scholar
  139. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA Microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570PubMedGoogle Scholar
  140. Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E, Feldman M, Segal G (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hana Trigui
    • 1
  • Nilmini Mendis
    • 1
  • Laam Li
    • 1
  • Mariam Saad
    • 1
  • Sebastien P. Faucher
    • 1
  1. 1.Faculty of Agricultural and Environmental Sciences, Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations