Skip to main content

Computational Analysis of High-Dimensional Flow Cytometric Data for Diagnosis and Discovery

  • Chapter
  • First Online:
High-Dimensional Single Cell Analysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 377))

Abstract

Recent technological advancements have enabled the flow cytometric measurement of tens of parameters on millions of cells. Conventional manual data analysis and bioinformatics tools cannot provide a complete analysis of these datasets due to this complexity. In this chapter we will provide an overview of a general data analysis pipeline both for automatic identification of cell populations of known importance (e.g., diagnosis by identification of predefined cell population) and for exploratory analysis of cohorts of flow cytometry assays (e.g., discovery of new correlates of a malignancy). We provide three real-world examples of how unsupervised discovery has been used in basic and clinical research. We also discuss challenges for evaluation of the algorithms developed for (1) identification of cell populations using clustering, (2) identification of specific cell populations, and (3) supervised analysis for discriminating between patient subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaeepour N, Chattopadhyay PK, Ganesan A, O’Neill K, Zare H, Jalali A, Hoos HH, Roederer M, Brinkman RR (2012a) Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28:1009–1016. doi: 10.1093/bioinformatics/bts082

    Google Scholar 

  • Aghaeepour N, Finak G, Consortium The FlowCAP, Dougall D, Khodabakhshi AH, Mah P, Obermoser G, Spidlen J, Taylor I, Wuensch SA, Bramson J, Eaves C, Weng AP, Iii ES, Ho K, Kollmann T, Rogers W, De Rosa S, Dalal B, Azad A, Pothen A, Brandes A, Bretschneider H, Bruggner R, Finck R, Jia R, Zimmerman N, Linderman M, Dill D, Nolan G, Chan C, Khettabi FE, O’Neill K, Chikina M, Ge Y, Sealfon S, Sugar I, Gupta A, Shooshtari P, Zare H, De Jager PL, Jiang M, Keilwagen J, Maisog JM, Luta G, Barbo AA, Majek P, Vilcek J, Manninen T, Huttunen H, Ruusuvuori P, Nykter M, McLachlan GJ, Wang K, Naim I, Sharma G, Nikolic R, Pyne S, Qian Y, Qiu P, Quinn J, Roth A, The DREAM, Consortium Meyer P, Stolovitzky G, Saez-Rodriguez J, Norel R, Bhattacharjee M, Biehl M, Bucher P, Bunte K, Di Camillo B, Sambo F, Sanavia T, Trifoglio E, Toffolo G, Dimitrieva S, Dreos R, Ambrosini G, Grau J, Grosse I, Posch S, Guex N, Keilwagen J, Kursa M, Rudnicki W, Liu B, Maienschein-Cline M, Manninen T, Huttunen H, Ruusuvuori P, Nykter M, Schneider P, Seifert M, Strickert M, Vilar JM, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. doi:10.1038/nmeth.2365

    PubMed Central  PubMed  Google Scholar 

  • Aghaeepour N, Jalali A, O’Neill K, Chattopadhyay PK, Roederer M, Hoos HH, Brinkman RR (2012b) RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81:1022–1030. doi:10.1002/cyto.a.22209

    Article  PubMed Central  PubMed  Google Scholar 

  • Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR (2011) Rapid cell population identification in flow cytometry data. Cytometry A 79:6–13. doi:10.1002/cyto.a.21007

    Article  PubMed Central  PubMed  Google Scholar 

  • Bagwell CB (2004) DNA histogram analysis for node-negative breast cancer. Cytometry 58A:76–78

    Article  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P, Amir eD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696. doi:10.1126/science.1198704

  • Bioconductor (2013) Bioconductor—Flow Cytometry. http://www.bioconductor.org/packages/2.12/BiocViews.html#–FlowCytometry. Accessed June

  • Boddy L, Wilkins MF, Morris CW (2001) Pattern recognition in flow cytometry. Cytometry 44:195–209

    Article  CAS  PubMed  Google Scholar 

  • Diehl AD, Augustine AD, Blake JA, Cowell LG, Gold ES, Gondre-Lewis TA, Masci AM, Meehan TF, Morel PA, Nijnik A, Peters B, Pulendran B, Scheuermann RH, Yao QA, Zand MS, Mungall CJ (2011) Hematopoietic cell types: prototype for a revised cell ontology. J Biomed Inform 44:75–79. doi:10.1016/j.jbi.2010.01.006

    Article  PubMed Central  PubMed  Google Scholar 

  • Finak G, Perez JM, Weng A, Gottardo R (2010) Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinform 11:546-2105-11-546. doi:10.1186/1471-2105-11-546

  • Ge Y, Sealfon SC (2012) flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28:2052–2058. doi:10.1093/bioinformatics/bts300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genom biol 5(10):R80

    Google Scholar 

  • Hahne F, LeMeur N, Brinkman R, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R (2009a) flowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10(1):106

    Google Scholar 

  • Hahne F, Meur NL, Brinkman R, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R (2009b) FlowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106

    Article  PubMed Central  PubMed  Google Scholar 

  • Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827

    CAS  PubMed  Google Scholar 

  • Jelizarow M, Guillemot V, Tenenhaus A, Strimmer K, Boulesteix A (2010) Over-optimism in bioinformatics: an illustration. Bioinformatics 26:1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M, Almeida J, Lhermitte L, Asnafi V, Mendonca A, de Tute R, Cullen M, Sedek L, Vidriales MB, Perez JJ, te Marvelde JG, Mejstrikova E, Hrusak O, Szczepanski T, van Dongen JJ, Orfao A, EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708) (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26:1986-2010. doi: 10.1038/leu.2012.122

  • Keeney M, Barnett D, Gratama J (2004) Impact of standardization on clinical cell analysis by flow cytometry. J Biol Regul Homeost Agents 18:305–312

    CAS  PubMed  Google Scholar 

  • Le Meur N (2013) Computational methods for evaluation of cell-based data assessment–Bioconductor. Curr Opin Biotechnol 24:105–111. doi:10.1016/j.copbio.2012.09.003

    Article  PubMed  Google Scholar 

  • Levin E, Serrano K, Devine DV (2013) Biomedical Excellence for Safer Transfusion (BEST) Collaborative (2013) Standardization of CD62P measurement: results of an international comparative study, Vox Sang. doi: 10.1111/vox.12023

  • Lizard G (2007) Flow cytometry analyses and bioinformatics: interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research. Cytometry A 71:646–647. doi:10.1002/cyto.a.20444

    Article  PubMed  Google Scholar 

  • Lo K, Brinkman RR, Gottardo R (2008) Automated gating of flow cytometry data via robust model-based clustering. Cytometry A. doi:10.1002/cyto.a.20531

    PubMed  Google Scholar 

  • Lugli E, Roederer M, Cossarizza A (2010) Data analysis in flow cytometry: the future just started. Cytometry A 77:705–713. doi:10.1002/cyto.a.20901

    Article  PubMed Central  PubMed  Google Scholar 

  • Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol 12:191–200. doi:10.1038/nri3158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, Hayes P, Birungi J, Anzala O, Garcia M, Harari A, Frank I, Baydo R, Baker M, Holbrook J, Ottinger J, Lamoreaux L, Epling CL, Sinclair E, Suni MA, Punt K, Calarota S, El-Bahi S, Alter G, Maila H, Kuta E, Cox J, Gray C, Altfeld M, Nougarede N, Boyer J, Tussey L, Tobery T, Bredt B, Roederer M, Koup R, Maino VC, Weinhold K, Pantaleo G, Gilmour J, Horton H, Sekaly RP (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13. doi: 10.1186/1471-2172-6-13

  • Maino VC, Maecker HT (2004) Cytokine flow cytometry: a multiparametric approach for assessing cellular immune responses to viral antigens. Clin Immunol 110:222–231. doi:10.1016/j.clim.2003.11.018

    Article  CAS  PubMed  Google Scholar 

  • Overton WR (1988) Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry 9:619–626

    Article  CAS  PubMed  Google Scholar 

  • Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, Baecher-Allan C, McLachlan GJ, Tamayo P, Hafler DA, De Jager PL, Mesirov JP (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0903028106

    PubMed Central  PubMed  Google Scholar 

  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38:500–501. doi:10.1038/ng0506-500

    Article  CAS  PubMed  Google Scholar 

  • Robinson JP, Rajwa B, Patsekin V, Davisson VJ (2012) Computational analysis of high-throughput flow cytometry data. Expert Opin Drug Discov 7:679–693. doi:10.1517/17460441.2012.693475

    Article  PubMed  Google Scholar 

  • Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205

    Article  CAS  PubMed  Google Scholar 

  • Roederer M, Hardy RR (2001) Frequency difference gating: a multivariate method for identifying subsets that differ between samples. Cytometry 45:56–64. doi:10.1002/1097-0320(20010901) 45:1 < 56:AID-CYTO1144 > 3.0.CO;2–9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Roederer M, Moore W, Treister A, Hardy RR, Herzenberg LA (2001) Probability binning comparison: a metric for quantitating multivariate distribution differences. Cytometry 45:47–55. doi:10.1002/1097-0320(20010901) 45:1 < 47:AID-CYTO1143 > 3.0.CO;2-A [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Le Meur N, Gentleman R (2008) Using flowViz to Visualize Flow Cytometry Data. Bioinformatics

    Google Scholar 

  • Spidlen J, Breuer K, Brinkman R (2012a) Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org). Curr Protoc Cytom Chapter 10:Unit 10.18. doi: 10.1002/0471142956.cy1018s61

  • Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR (2012b) FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 81:727–731. doi:10.1002/cyto.a.22106

    Article  PubMed  Google Scholar 

  • Suni MA, Dunn HS, Orr PL, de Laat R, Sinclair E, Ghanekar SA, Bredt BM, Dunne JF, Maino VC, Maecker HT (2004) Performance of plate-based cytokine flow cytometry with automated data analysis. feedback

    Google Scholar 

  • Zare H, Bashashati A, Kridel R, Aghaeepour N, Haffari G, Connors JM, Gascoyne RD, Gupta A, Brinkman RR, Weng AP (2012) Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma. Am J Clin Pathol 137:75–85. doi: 10.1309/AJCPMMLQ67YOMGEW

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Brinkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aghaeepour, N., Brinkman, R. (2013). Computational Analysis of High-Dimensional Flow Cytometric Data for Diagnosis and Discovery. In: Fienberg, H., Nolan, G. (eds) High-Dimensional Single Cell Analysis. Current Topics in Microbiology and Immunology, vol 377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_337

Download citation

Publish with us

Policies and ethics