Skip to main content

A Single-Cell Perspective on Non-Growing but Metabolically Active (NGMA) Bacteria

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 374))

Abstract

A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently “viable but non-culturable” (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the “non-growing but metabolically active” state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM (2012) Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104

    PubMed  CAS  Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, Petersen Bjorn S, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    PubMed  CAS  Google Scholar 

  • Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S (2006) Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 9:869–879

    Google Scholar 

  • Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768–775

    PubMed  CAS  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    PubMed  CAS  Google Scholar 

  • Barcina I, Arana I (2009) The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria? Rev Environ Sci Biotechnol 8:245–255

    Google Scholar 

  • Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel1 Y, Barkai N (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38:636–643

    Google Scholar 

  • Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    PubMed  CAS  Google Scholar 

  • Biketov S, Mukamolova GV, Potapov V, Gilenkov E, Vostroknutova g, Kell DB, Young M, Kaprelyants AS (2000) Culturability of Mycobacterium tuberculosis cells isolated from murine macrophages: a bacterial growth factor promotes recovery. FEMS Immunol Med Microbiol 29:233–240

    Google Scholar 

  • Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS (2012) Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol 78:3221–3228

    PubMed  CAS  Google Scholar 

  • Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    PubMed  CAS  Google Scholar 

  • Chubb JR, Liverpool TB (2010) Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr Opin Genet Develop 20:478–484

    CAS  Google Scholar 

  • Colwell RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125

    PubMed  CAS  Google Scholar 

  • Colwell RR, Brayton P, Herrington D, Tall B, Huq A, Levine MM (1996) Viable but non-culturable Vibrio cholerae 01 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31

    Google Scholar 

  • Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127

    PubMed  CAS  Google Scholar 

  • Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171

    PubMed  CAS  Google Scholar 

  • Davey HM, Kell DB, Weichart DH, Kaprelyants AS (2004) Estimation of microbial viability using flow cytometry. Curr Protoc Cytom 11(3):1–21

    Google Scholar 

  • Davidson CJ, Surette MG (2008) Individuality in bacteria. Annu Rev Genet 42:253–268

    PubMed  CAS  Google Scholar 

  • de Wit D, Wootton M, Dhillont J, Mitchisont DA (1995) The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis. Tuber Lung Dis 76:555–562

    PubMed  Google Scholar 

  • Desnues B, Cuny C, Grégori G, Dukan S, Aguilaniu H, Nyström T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4:400–404

    PubMed  CAS  Google Scholar 

  • Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Micriobiol 10:30–38

    CAS  Google Scholar 

  • Dhillon J, Lowrie DB, Mitchison DA (2004) Mycobacterium tuberculosis from chronic murine infections that grows in liquid but not on solid medium. BMC Infect Dis 4:1–4

    Google Scholar 

  • Epstein SS (2009) Microbial awakenings. Nature 457:1083

    PubMed  CAS  Google Scholar 

  • Ericsson M, Hanstorp D, Hagberg P, Enger J, Nyström T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182:5551–5555

    PubMed  CAS  Google Scholar 

  • Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royera CA (2012) Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc Natl Acad Sci U S A 109:155–160

    PubMed  CAS  Google Scholar 

  • Fidalgo LM, Maerkl SJ (2011) A software-programmable microfluidic device for automated biology. Lab Chip 11:1612–1619

    PubMed  CAS  Google Scholar 

  • Finkel SE (2006) Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 4:113–120

    PubMed  CAS  Google Scholar 

  • Gengenbacher M, Rao SPS, Pethe K, Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156:81–87

    PubMed  CAS  Google Scholar 

  • Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214

    PubMed  CAS  Google Scholar 

  • Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP (2011) Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 8:949–955

    PubMed  CAS  Google Scholar 

  • Golchin SA, Stratford J, Curry RJ, McFadden J (2012) A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Tuberculosis (Edinb.) 92:489–496

    Google Scholar 

  • Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036

    PubMed  CAS  Google Scholar 

  • Gonzàlez-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35:415–424

    PubMed  Google Scholar 

  • Griffitt KJ, Noriea NF, Johnson CN, Grimes DJ (2011) Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. J Microbiol Methods 85:114–118

    PubMed  CAS  Google Scholar 

  • Hamid Salim A, Aung KJ, Hossain MA, Van Deun A (2006) Early and rapid microscopy-based diagnosis of true treatment failure and MDR-TB. Int J Tuberc Lung Dis 10:1248–1254

    PubMed  CAS  Google Scholar 

  • Heim S, Lleo MdM, Bonato B, Guzman CA, Canepari P (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745

    PubMed  CAS  Google Scholar 

  • Hu Y, Mangan JA, Dhillon J, Sole KM, Mitchison DA, Butcher PD, Coates ARM (2000) Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol 182:6358–6365

    PubMed  CAS  Google Scholar 

  • Huh D, Paulsson J (2011) Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Genet 43:95–100

    PubMed  CAS  Google Scholar 

  • James CD, Moorman MW, Carson BD, Branda CS, Lantz JW, Manginell RP, Martino A, Singh AK (2009) Nuclear translocation kinetics of NF-κB in macrophages challenged with pathogens in a microfluidic platform. Biomed Microdevices 11:693–700

    PubMed  Google Scholar 

  • Jin DJ, Cagliero C, Zhou YN (2012) Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 36:269–287

    PubMed  CAS  Google Scholar 

  • Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, Machowski EE, Tsenova L, Young M, Kaprelyants A, Kaplan G, Mizrahi V (2008) The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684

    PubMed  CAS  Google Scholar 

  • Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196

    PubMed  CAS  Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Kell DB (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution. FEMS Microbiol Lett 115:347–352

    Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 73:169–187

    PubMed  CAS  Google Scholar 

  • Kogure K, Simidu U, Taga N, Colwell RR (1987) Correlation of direct viable counts with heterotrophic activity for marine bacteria. Appl Environ Microbiol 53:2322–2327

    Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    PubMed  CAS  Google Scholar 

  • Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814

    PubMed  Google Scholar 

  • Lahtinen SJ, Ahokoski H, Reinikainen JP, Gueimonde M, Nurmi J, Ouwehand AC, Salminen SJ (2008) Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett Appl Microbiol 46:693–698

    PubMed  CAS  Google Scholar 

  • Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19:630–637

    PubMed  CAS  Google Scholar 

  • Lew S, Lew M, Mieszczynski T, Szarek J (2010) Selected fluorescent techniques for identification of the physiological state of individual water and soil bacterial cells. Folia Microbiol (Praha) 55:107–118

    CAS  Google Scholar 

  • Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    PubMed  CAS  Google Scholar 

  • Lionnet T, Singer RH (2012) Transcription goes digital. EMBO Rep 13:313–321

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Methods 2:444–456

    CAS  Google Scholar 

  • Liu Y, Gilchrist A, Zhang J, Li XF (2008) Detection of viable but nonculturable Escherichia coli O157:H7 bacteria in drinking water and river water. Appl Environ Microbiol 74:1502–1507

    PubMed  CAS  Google Scholar 

  • Locke JCW, Elowitz MB (2009) Using movies to analyze gene circuit dynamics in single cells. Nat Rev Microbiol 7:383–392

    PubMed  CAS  Google Scholar 

  • Lothigius A, Sjöling A, Svennerholm AM, Bölin I (2010) Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J Appl Microbiol 108:1441–1449

    PubMed  CAS  Google Scholar 

  • Lowder M, Unge A, Maraha N, Jansson JK, Swiggett J, Oliver JD (2000) Effect of starvation and the viable-but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Appl Environ Microbiol 66:3160–3165

    PubMed  CAS  Google Scholar 

  • Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, García-Sastre A (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107:11531–11536

    PubMed  CAS  Google Scholar 

  • McCune RM, Feldmann FM, Lambert HP, McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissue. J Exp Med 123:445–468

    PubMed  CAS  Google Scholar 

  • Meissner S, Knels L, Krueger A, Koch T, Koch E (2009) Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs. J Biomed Opt 14:054020

    PubMed  Google Scholar 

  • Mizunoe Y, Wai SN, Takade A, Yoshida S (1999) Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by using H2O2-degrading compounds. Arch Microbiol 172:63–67

    PubMed  CAS  Google Scholar 

  • Muela A, Seco C, Camafeita E, Arana I, Orruno M, Lopez JA, Barcina I (2008) Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state. FEMS Microbiol Lett 64:28–36

    CAS  Google Scholar 

  • Mukamolova GV, Turapov OA, Young DI, Kaprelyants AS, Kell DB, Young M (2002) A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol 46:623–635

    PubMed  CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Kell DB, Young M (2003) Adoption of the transiently non-culturable state—a bacterial survival strategy? Adv Microb Physiol 47:65–129

    PubMed  CAS  Google Scholar 

  • Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR (2010) Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am J Respir Crit Care Med 181:174–180

    PubMed  CAS  Google Scholar 

  • Nam SW, Chen X, Lim J, Kim SH, Kim ST, Cho YH, Yoon J, Park S (2011) In vivo fluorescence imaging of bacteriogenic cyanide in the lungs of live mice infected with cystic fibrosis pathogens. PLoS One 6:e21387

    PubMed  CAS  Google Scholar 

  • Navarro Llorens JM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495

    PubMed  Google Scholar 

  • Nazarova EV, Shleeva MO, Morozova NS, Kudykina YK, Vostroknutova GN, Ruzhitsky AO, Selishcheva AA, Sorokoumova GM, Shvets VI, Kaprelyants AS (2011) Role of lipid components in formation and reactivation of Mycobacterium smegmatis “nonculturable” cells. Biochemistry (Mosc) 76:636–644

    CAS  Google Scholar 

  • Nikitushkin VD, Demina GR, Shleeva MO, Kaprelyants AS (2013) Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie van Leeuwenhoek 103:37–46

    PubMed  CAS  Google Scholar 

  • Nyström T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176:159–164

    PubMed  Google Scholar 

  • Obregón-Henao A, Shanley CA, Shang S, Caraway ML, Basaraba RJ, Duncan CG, Ordway DJ, Orme IM (2012) Cortisone-forced reactivation of weakly acid fast positive Mycobacterium tuberculosis in guinea pigs previously treated with chemotherapy. Mycobac Dis 2:1–5

    Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    PubMed  CAS  Google Scholar 

  • Oliver JD, Bockian R (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol 61:2620–2623

    PubMed  CAS  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    PubMed  CAS  Google Scholar 

  • Pawlowski DR, Metzger DJ, Raslawsky A, Howlett A, Siebert G, Karalus RJ, Garrett S, Whitehouse CA (2011) Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm. PLoS One 6:e17585

    PubMed  CAS  Google Scholar 

  • Piqueres P, Moreno Y, Alonso JL, Ferrús MA (2006) A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Res Microbiol 157:345–349

    PubMed  CAS  Google Scholar 

  • Rahman I, Shahamat M, Kirchman PA, Russek-Cohen E, Colwell RR (1994) Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae Type 1. Appl Environ Microbiol 60:3573–3578

    PubMed  CAS  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitza DA (2009) Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106:18149–18154

    PubMed  CAS  Google Scholar 

  • Sala C, Dhar N, Hartkoorn RC, Zhang M, Ha YH, Schneider P, Cole ST (2010) Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 54:4150–4158

    PubMed  CAS  Google Scholar 

  • Segev E, Smith Y, Ben-Yehuda S (2012) RNA dynamics in aging bacterial spores. Cell 148:139–149

    PubMed  CAS  Google Scholar 

  • Senoh M, Ghosh-Banerjee J, Ramamurthy T, Colwell RR, Miyoshi S, Nair GB, Takeda Y (2012) Conversion of viable but nonculturable enteric bacteria to culturable by co-culture with eukaryotic cells. Microbiol Immunol 56:342–345

    PubMed  CAS  Google Scholar 

  • Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–496

    PubMed  CAS  Google Scholar 

  • Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Kaprelyants AS (2011) Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis (Edinb) 91:146–154

    CAS  Google Scholar 

  • Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375

    PubMed  CAS  Google Scholar 

  • Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–474

    PubMed  CAS  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    PubMed  CAS  Google Scholar 

  • Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–537

    PubMed  CAS  Google Scholar 

  • Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, Zhao X, Lukyanov S, Matz M, Kim S, Weissman I, Siebert P (2000) “Fluorescent timer”: protein that changes color with time. Science 290:1585–1588

    PubMed  CAS  Google Scholar 

  • Trevors JT (2011) Viable but non-culturable (VBNC) bacteria: gene expression in planktonic and biofilm cells. J Microbiol Methods 86:266–273

    PubMed  CAS  Google Scholar 

  • Ueta M, Ohniwa RL, Yoshida H, Maki Y, Wada C, Wada A (2008) Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. J Biochem 143:425–433

    PubMed  CAS  Google Scholar 

  • Ueta M, Wada C, Wada A (2010) Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells 15:43–58

    PubMed  CAS  Google Scholar 

  • Valencia-Burton M, McCullough RM, Cantor CR, Broude NE (2007) RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods 4:421–427

    PubMed  CAS  Google Scholar 

  • Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95

    PubMed  CAS  Google Scholar 

  • Walling MA, Shepard JRE (2011) Cellular heterogeneity and live cell arrays. Chem Soc Rev 40:4049–4076

    PubMed  CAS  Google Scholar 

  • Wayne LG (1976) Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am Rev Respir Dis 114:807–811

    PubMed  CAS  Google Scholar 

  • White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J, Aparicio S, Hansen CL (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A 108:13999–14004

    PubMed  CAS  Google Scholar 

  • Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194(8):2062–2073

    PubMed  CAS  Google Scholar 

  • Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23:110–119

    PubMed  CAS  Google Scholar 

  • Young DB, Gideon HP, Wilkinson RJ (2006) Eliminating latent tuberculosis. Trends Microbiol 17:183–188

    Google Scholar 

  • Yu J, Xiao J, Ren X, Lao X, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311:1600–1603

    PubMed  CAS  Google Scholar 

  • Zhang Y, Yang Y, Woods A, Cotter RJ, Sun Z (2001) Resuscitation of dormant Mycobacterium tuberculosis by phospholipids or specific peptides. Biochem Biophys Res Comm 284:542–547

    PubMed  CAS  Google Scholar 

  • Zhu K, Kaprelyants AS, Salina EG, Markx GH (2010a) Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. Biomicrofluidics 4:022809

    PubMed  Google Scholar 

  • Zhu K, Kaprelyants AS, Salina EG, Schuler M, Markx GH (2010b) Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy. Biomicrofluidics 4:022810

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Manina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manina, G., McKinney, J.D. (2013). A Single-Cell Perspective on Non-Growing but Metabolically Active (NGMA) Bacteria. In: Pieters, J., McKinney, J. (eds) Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism. Current Topics in Microbiology and Immunology, vol 374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_333

Download citation

Publish with us

Policies and ethics