Advertisement

Central Tolerance Induction

  • Maria L. Mouchess
  • Mark AndersonEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 373)

Abstract

A critical function of the thymus is to help enforce tolerance to self. The importance of central tolerance in preventing autoimmunity has been enlightened by a deeper understanding of the interactions of developing T cells with a diverse population of thymic antigen presenting cell populations. Furthermore, there has been rapid progress in our understanding of how autoreactive T cell specificities are diverted into the T regulatory lineage. Here we review and highlight the recent progress in how tolerance is imposed on the developing thymocyte repertoire.

Keywords

Negative Selection Central Tolerance Thymic Medulla Treg Differentiation Treg Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the NIH, The Helmsley Charitable Trust, and The Burroughs Wellcome Fund. The authors have no conflict of interest to disclose.

References

  1. Aaltonen J (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17(4):399–403. doi: 10.1038/ng1297-399 CrossRefGoogle Scholar
  2. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140(1):123–135. doi: 10.1016/j.cell.2009.12.030, S0092-8674(09)01616-X [pii]PubMedCrossRefGoogle Scholar
  3. Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J-I (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251PubMedCrossRefGoogle Scholar
  4. Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J-I (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437PubMedCrossRefGoogle Scholar
  5. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401PubMedCrossRefGoogle Scholar
  6. Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763PubMedGoogle Scholar
  7. Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358PubMedCrossRefGoogle Scholar
  8. Baldwin TA, Sandau MM, Jameson SC, Hogquist KA (2005) The timing of TCR alpha expression critically influences T cell development and selection. J Exp Med 202(1):111–121. doi: 10.1084/jem.20050359, jem.20050359 [pii]PubMedCrossRefGoogle Scholar
  9. Bautista JL, Lio C-WJ, Lathrop SK, Forbush K, Liang Y, Luo J, Rudensky AY, Hsieh C-S (2009) Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat Immunol 10:610–617PubMedCrossRefGoogle Scholar
  10. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21. doi: 10.1038/83713 PubMedCrossRefGoogle Scholar
  11. Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med 198:757–769PubMedCrossRefGoogle Scholar
  12. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH (2006) Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7:1092–1100PubMedCrossRefGoogle Scholar
  13. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415(6874):922–926. doi: 10.1038/415922a, 415922a [pii]PubMedCrossRefGoogle Scholar
  14. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73PubMedCrossRefGoogle Scholar
  15. Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio C-WJ, Vegoe AL, Hsieh C-S, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121PubMedCrossRefGoogle Scholar
  16. Burnet F (1958) The clonal selection theory of acquired immunity. Vanderbilt University Press, NashvilleGoogle Scholar
  17. Calnan BJ, Szychowski S, Chan FK, Cado D, Winoto A (1995) A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3(3):273–282PubMedCrossRefGoogle Scholar
  18. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:75–81CrossRefGoogle Scholar
  19. Cho HJ, Edmondson SG, Miller AD, Sellars M, Alexander ST, Somersan S, Punt JA (2003) Cutting edge: identification of the targets of clonal deletion in an unmanipulated thymus. J Immunol 170(1):10–13PubMedGoogle Scholar
  20. D’Cruz LM, Klein L (2005) Development and function of agonist-induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159PubMedCrossRefGoogle Scholar
  21. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444(7120):724–729. doi: 10.1038/nature05269, nature05269 [pii] PubMedCrossRefGoogle Scholar
  22. Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao Kh, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC (2009) Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med 206:1853–1862PubMedCrossRefGoogle Scholar
  23. Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202(1):33–45. doi: 10.1084/jem.20050471, jem.20050471 [pii]PubMedCrossRefGoogle Scholar
  24. Derbinski J, Pinto S, Rosch S, Hexel K, Kyewski B (2008) Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci USA 105(2):657–662. doi: 10.1073/pnas.0707486105, 0707486105 [pii]PubMedCrossRefGoogle Scholar
  25. Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2(11):1032–1039. doi: 10.1038/ni723ni723, ni723 [pii]PubMedCrossRefGoogle Scholar
  26. DeVoss JJ, LeClair NP, Hou Y, Grewal NK, Johannes KP, Lu W, Yang T, Meagher C, Fong L, Strauss EC, Anderson MS (2010) An autoimmune response to odorant binding protein 1a is associated with dry eye in the Aire-deficient mouse. J Immunol 184:4236–4246PubMedCrossRefGoogle Scholar
  27. DiPaolo RJ, Shevach EM (2009) CD4+ T-cell development in a mouse expressing a transgenic TCR derived from a Treg. Eur J Immunol 39:234–240PubMedCrossRefGoogle Scholar
  28. Fassett MS, Jiang W, D’Alise AM, Mathis D, Benoist C (2012) Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci USA 109(10):3891–3896. doi: 10.1073/pnas.1200090109, 1200090109 [pii]PubMedCrossRefGoogle Scholar
  29. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H (1995) Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature 375(6534):795–798. doi: 10.1038/375795a0 PubMedCrossRefGoogle Scholar
  30. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi: 10.1038/ni904, ni904 [pii]PubMedCrossRefGoogle Scholar
  31. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341PubMedCrossRefGoogle Scholar
  32. Fowlkes BJ, Schwartz RH, Pardoll DM (1988) Deletion of self-reactive thymocytes occurs at a CD4+8+ precursor stage. Nature 334(6183):620–623. doi: 10.1038/334620a0 PubMedCrossRefGoogle Scholar
  33. Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200:1039–1049PubMedCrossRefGoogle Scholar
  34. Gil D, Schrum AG, Alarcon B, Palmer E (2005) T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med 201(4):517–522. doi: 10.1084/jem.20042036, jem.20042036 [pii]PubMedCrossRefGoogle Scholar
  35. Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA 109:535–540PubMedCrossRefGoogle Scholar
  36. Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204:2521–2528PubMedCrossRefGoogle Scholar
  37. Gray DHD, Kupresanin F, Berzins SP, Herold MJ, O′Reilly LA, Bouillet P, Strasser A (2012) The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens. Immunity 37:451–462PubMedCrossRefGoogle Scholar
  38. Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J-I, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450PubMedCrossRefGoogle Scholar
  39. Hinterberger M, Aichinger M, da Costa OP, Voehringer D, Hoffmann R, Klein L (2010) Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol 11:512–519PubMedCrossRefGoogle Scholar
  40. Hori S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061PubMedCrossRefGoogle Scholar
  41. Hsieh C-S, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277PubMedCrossRefGoogle Scholar
  42. Hsieh C-S, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410PubMedCrossRefGoogle Scholar
  43. Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, Proietto AI, Cannon PZF, Forehan S, Smyth GK, Wu L, Goodnow CC, Carbone FR, Scott HS, Heath WR (2011) Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118:2462–2472PubMedCrossRefGoogle Scholar
  44. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326PubMedGoogle Scholar
  45. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306PubMedCrossRefGoogle Scholar
  46. Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172:2067–2075PubMedGoogle Scholar
  47. Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49(2):273–280, 0092-8674(87)90568-X [pii]PubMedCrossRefGoogle Scholar
  48. Khattri R, Cox T, Yasayko S-A, Ramsdell F (2003) An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 4:337–342PubMedCrossRefGoogle Scholar
  49. Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+ 8+ thymocytes. Nature 333(6175):742–746. doi: 10.1038/333742a0 PubMedCrossRefGoogle Scholar
  50. Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202:1375–1386PubMedCrossRefGoogle Scholar
  51. Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206:1505–1513PubMedCrossRefGoogle Scholar
  52. Koh AS, Kingston RE, Benoist C, Mathis D (2010) Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. Proc Natl Acad Sci USA 107(29):13016–13021. doi: 10.1073/pnas.1004436107, 1004436107 [pii]PubMedCrossRefGoogle Scholar
  53. Kwan J, Killeen N (2004) CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 172(7):3999–4007PubMedGoogle Scholar
  54. Lee H-M, Bautista JL, Scott-Browne J, Mohan JF, Hsieh C-S (2012) A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 37:475–486PubMedCrossRefGoogle Scholar
  55. Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, De Waal Malefyt R, Nitta T, Takahama Y (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208:383–394PubMedCrossRefGoogle Scholar
  56. Leung MWL, Shen S, Lafaille JJ (2009) TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J Exp Med 206:2121–2130PubMedCrossRefGoogle Scholar
  57. Li J, Park J, Foss D, Goldschneider I (2009) Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med 206(3):607–622. doi: 10.1084/jem.20082232, jem.20082232 [pii]PubMedCrossRefGoogle Scholar
  58. Lio C-WJ, Hsieh C-S (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111PubMedCrossRefGoogle Scholar
  59. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+ CD25+ Foxp3+ regulatory T cells. Nat Immunol 9:632–640PubMedCrossRefGoogle Scholar
  60. Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454. doi: 10.1016/j.immuni.2006.07.012, S1074-7613(06)00388-8 [pii]PubMedCrossRefGoogle Scholar
  61. McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204(11):2513–2520. doi: 10.1084/jem.20070601, S1074-7613(06)00388-8 [pii]PubMedCrossRefGoogle Scholar
  62. McNeil LK, Starr TK, Hogquist KA (2005) A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci USA 102(38):13574–13579. doi: 10.1073/pnas.0505110102, 0505110102 [pii]PubMedCrossRefGoogle Scholar
  63. Metzger TC, Anderson MS (2011) Control of central and peripheral tolerance by Aire. Immunol Rev 241:89–103PubMedCrossRefGoogle Scholar
  64. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208:1279–1289PubMedCrossRefGoogle Scholar
  65. Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, Nishikawa Y, Nii T, Kiyonari H, Abe T, Uehara H, Izumi K, Tamada K, Chen L, Penninger JM, Inoue J-I, Akiyama T, Matsumoto M (2011) Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol 186:5047–5057PubMedCrossRefGoogle Scholar
  66. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316(5829):1349–1353. doi: 10.1126/science.1141915, 316/5829/1349 [pii]PubMedCrossRefGoogle Scholar
  67. Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCRlo thymocytes in vivo. Science 250(4988):1720–1723PubMedCrossRefGoogle Scholar
  68. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400PubMedCrossRefGoogle Scholar
  69. Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, Fugger L, Polzella P, Cerundolo V, Dushek O, Hofer T, Viola A, Acuto O (2010) Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32(6):766–777. doi: 10.1016/j.immuni.2010.05.011, S1074-7613(10)00203-7 [pii]PubMedCrossRefGoogle Scholar
  70. Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166(3906):753–755PubMedCrossRefGoogle Scholar
  71. Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248(4962):1517–1523PubMedCrossRefGoogle Scholar
  72. Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, Liiv I, Maran U, Mollica L, Bottomley MJ, Musco G, Peterson P (2008) The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 9(4):370–376. doi: 10.1038/sj.embor.2008.11 embor200811 [pii]PubMedCrossRefGoogle Scholar
  73. Ouyang W, Beckett O, Ma Q, Li MO (2010) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32: 642–653Google Scholar
  74. Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM (2007) AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 27(24):8815–8823. doi: 10.1128/MCB.01085-07, MCB.01085-07 [pii]PubMedCrossRefGoogle Scholar
  75. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T cell receptor diversity of Foxp3+ CD4+ CD25+ T cells. Immunity 25:249–259PubMedCrossRefGoogle Scholar
  76. Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L (2008) Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA 105:19869–19874PubMedCrossRefGoogle Scholar
  77. Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJL, Anderson G (2007) RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272PubMedCrossRefGoogle Scholar
  78. Sadlack B, Merz H, Schorle H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75(2):253–261, 0092-8674(93)80067-O [pii]PubMedCrossRefGoogle Scholar
  79. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  80. Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 156:1577–1586PubMedCrossRefGoogle Scholar
  81. Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59(6):1035–1048. 0092-8674(89)90760-5 [pii]PubMedCrossRefGoogle Scholar
  82. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352(6336):621–624. doi: 10.1038/352621a0 PubMedCrossRefGoogle Scholar
  83. Shum AK, DeVoss J, Tan CL, Hou Y, Johannes K, O’Gorman CS, Jones KD, Sochett EB, Fong L, Anderson MS (2009) Identification of an autoantigen demonstrates a link between interstitial lung disease and a defect in central tolerance. Sci Transl Med 1(9):9ra20. doi: 10.1126/scitranslmed.3000284, 1/9/9ra20 [pii]PubMedCrossRefGoogle Scholar
  84. Smith KM, Olson DC, Hirose R, Hanahan D (1997) Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int Immunol 9(9):1355–1365PubMedCrossRefGoogle Scholar
  85. Sohn SJ, Thompson J, Winoto A (2007) Apoptosis during negative selection of autoreactive thymocytes. Curr Opin Immunol 19(5):510–515. doi: 10.1016/j.coi.2007.06.001, S0952-7915(07)00104-5 [pii]PubMedCrossRefGoogle Scholar
  86. Spence PJ, Green EA (2008) Foxp3+ regulatory T cells promiscuously accept thymic signals critical for their development. Proc Natl Acad Sci USA 105:973–978PubMedCrossRefGoogle Scholar
  87. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176. doi: 10.1146/annurev.immunol.21.120601.141107, 120601.141107 [pii]PubMedCrossRefGoogle Scholar
  88. Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, DeVoss JJ, Johannes KPA, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS (2008) Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest 118:1712–1726PubMedCrossRefGoogle Scholar
  89. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268(5216):1472–1476PubMedCrossRefGoogle Scholar
  90. Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, Jenkins MK, Anderson MS (2012) Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc Natl Acad Sci USA 109:7847–7852PubMedCrossRefGoogle Scholar
  91. Thompson J, Winoto A (2008) During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med 205(5):1029–1036. doi: 10.1084/jem.20080101, jem.20080101 [pii]PubMedCrossRefGoogle Scholar
  92. Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200(4):493–505. doi: 10.1084/jem.20040643 jem.20040643 [pii]PubMedCrossRefGoogle Scholar
  93. Venanzi ES, Gray DH, Benoist C, Mathis D (2007) Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol 179(9):5693–5700, 179/9/5693 [pii]PubMedGoogle Scholar
  94. Villasenor J, Besse W, Benoist C, Mathis D (2008) Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci USA 105(41):15854–15859. doi: 10.1073/pnas.0808069105, 0808069105 [pii]PubMedCrossRefGoogle Scholar
  95. Watanabe N, Wang Y-H, Lee HK, Ito T, Wang Y-H, Cao W, Liu Y-J (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus. Nature 436:1181–1185PubMedCrossRefGoogle Scholar
  96. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20PubMedCrossRefGoogle Scholar
  97. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530, 1074-7613(95)90180-9 [pii]PubMedCrossRefGoogle Scholar
  98. Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 178:7032–7041PubMedGoogle Scholar
  99. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, Hennighausen L, Wu C, O’Shea JJ (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375PubMedCrossRefGoogle Scholar
  100. Yin X, Ladi E, Chan SW, Li O, Killeen N, Kappes DJ, Robey EA (2007) CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. J Immunol 179(11):7358–7364, 179/11/7358 [pii]PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Diabetes CenterUniversity of California-San FranciscoSan FranciscoUSA

Personalised recommendations