Skip to main content

Getting Across the Cell Envelope: Mycobacterial Protein Secretion

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 374))

Abstract

Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah AM, Verboom T, Hannes F et al (2006) A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62:667–679

    PubMed  CAS  Google Scholar 

  • Abdallah AM, Gey van Pittius NC, Champion PA et al (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5:883–891

    PubMed  CAS  Google Scholar 

  • Abdallah AM, Savage ND, van Zon M et al (2008) The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J Immunol 181:7166–7175

    PubMed  CAS  Google Scholar 

  • Abdallah AM, Verboom T, Weerdenburg EM et al (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73:329–340

    PubMed  CAS  Google Scholar 

  • Abdallah AM, Bestebroer J, Savage ND et al (2011) Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol 187:4744–4753

    PubMed  CAS  Google Scholar 

  • Akpe San Roman S, Facey PD, Fernandez-Martinez L et al (2010) A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156:1719–1729

    PubMed  Google Scholar 

  • Archambaud C, Nahori MA, Pizarro-Cerda J et al (2006) Control of Listeria superoxide dismutase by phosphorylation. J Biol Chem 281:31812–31822

    PubMed  CAS  Google Scholar 

  • Behr MA, Wilson MA, Gill WP et al (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

    PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, Widdick D et al (2005) Prediction of twin-arginine signal peptides. BMC Bioinform 6:167

    Google Scholar 

  • Bensing BA, Sullam PM (2002) An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094

    PubMed  CAS  Google Scholar 

  • Bensing BA, Sullam PM (2010) Transport of preproteins by the accessory Sec system requires a specific domain adjacent to the signal peptide. J Bacteriol 192:4223–4232

    PubMed  CAS  Google Scholar 

  • Bensing BA, Yen YT, Seepersaud R et al (2012) A specific interaction between SecA2 and a region of the preprotein adjacent to the signal peptide occurs during transport via the accessory Sec system. J Biol Chem 287:24438–24447

    PubMed  CAS  Google Scholar 

  • Berthet FX, Rasmussen PB, Rosenkrands I et al (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144(Pt 11):3195–3203

    PubMed  CAS  Google Scholar 

  • Bitter W, Houben EN, Bottai D et al (2009) Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5:e1000507

    PubMed  Google Scholar 

  • Blasco B, Chen JM, Hartkoorn R et al (2012) Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog 8:e1002621

    PubMed  Google Scholar 

  • Bolhuis A, Mathers JE, Thomas JD et al (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219

    PubMed  CAS  Google Scholar 

  • Bönemann G, Pietrosiuk A, Mogk A (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol 76:815–821

    PubMed  Google Scholar 

  • Bordes P, Cirinesi AM, Ummels R et al (2011) SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108:8438–8443

    PubMed  CAS  Google Scholar 

  • Bottai D, Di Luca M, Majlessi L et al (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83:1195–1209

    PubMed  CAS  Google Scholar 

  • Braunstein M, Brown AM, Kurtz S et al (2001) Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183:6979–6990

    PubMed  CAS  Google Scholar 

  • Braunstein M, Espinosa BJ, Chan J et al (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48:453–464

    PubMed  CAS  Google Scholar 

  • Breukink E, Nouwen N, van Raalte A et al (1995) The C terminus of SecA is involved in both lipid binding and SecB binding. J Biol Chem 270:7902–7907

    PubMed  CAS  Google Scholar 

  • Breyton C, Haase W, Rapoport TA et al (2002) Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418:662–665

    PubMed  CAS  Google Scholar 

  • Brodin P, Majlessi L, Marsollier L et al (2006) Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 74:88–98

    PubMed  CAS  Google Scholar 

  • Brown GD, Dave JA, Gey van Pittius NC et al (2000) The mycosins of Mycobacterium tuberculosis H37Rv: a family of subtilisin-like serine proteases. Gene 254:147–155

    PubMed  CAS  Google Scholar 

  • Burts ML, Williams WA, DeBord K et al (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102:1169–1174

    PubMed  CAS  Google Scholar 

  • Carlsson F, Joshi SA, Rangell L et al (2009) Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 5:e1000285

    PubMed  Google Scholar 

  • Cascioferro A, Daleke MH, Ventura M et al (2011) Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. PLoS One 6:e27713

    PubMed  CAS  Google Scholar 

  • Champion PA, Stanley SA, Champion MM et al (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636

    PubMed  Google Scholar 

  • Champion MM, Williams EA, Kennedy GM et al (2012) Direct detection of bacterial protein secretion using whole colony proteomics. Mol Cell Proteomics 11:596–604

    PubMed  CAS  Google Scholar 

  • Chen JM, Boy-Rottger S, Dhar N et al (2012) EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J Bacteriol 194:884–893

    PubMed  CAS  Google Scholar 

  • Cline K, Mori H (2001) Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154:719–729

    PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    PubMed  CAS  Google Scholar 

  • Converse SE, Cox JS (2005) A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol 187:1238–1245

    PubMed  CAS  Google Scholar 

  • Coros A, Callahan B, Battaglioli E et al (2008) The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 69:794–808

    PubMed  CAS  Google Scholar 

  • Daleke MH, Cascioferro A, de Punder K et al (2011) Conserved Pro-Glu (PE) and Pro–Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem 286:19024–19034

    PubMed  CAS  Google Scholar 

  • Daleke MH, Ummels R, Bawono P et al (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109:11342–11347

    PubMed  CAS  Google Scholar 

  • Dave JA, Gey van Pittius NC, Beyers AD et al (2002) Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages. BMC Microbiol 2:30

    PubMed  Google Scholar 

  • de Jonge MI, Pehau-Arnaudet G, Fretz MM et al (2007) ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189:6028–6034

    PubMed  Google Scholar 

  • Deb C, Daniel J, Sirakova TD et al (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875

    PubMed  CAS  Google Scholar 

  • DiGiuseppe Champion PA, Champion MM, Manzanillo P et al (2009) ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73:950–962

    CAS  Google Scholar 

  • Dilks K, Rose RW, Hartmann E et al (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483

    PubMed  CAS  Google Scholar 

  • du Plessis DJ, Nouwen N, Driessen AJ (2011) The Sec translocase. Biochim Biophys Acta 1808:851–865

    PubMed  Google Scholar 

  • Fekkes P, van der Does C, Driessen AJ (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:6105–6113

    PubMed  CAS  Google Scholar 

  • Flint JL, Kowalski JC, Karnati PK et al (2004) The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 101:12598–12603

    PubMed  CAS  Google Scholar 

  • Fortune SM, Jaeger A, Sarracino DA et al (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 102:10676–10681

    PubMed  CAS  Google Scholar 

  • Frigui W, Bottai D, Majlessi L et al (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33

    PubMed  Google Scholar 

  • Gao LY, Guo S, McLaughlin B et al (2004) A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 53:1677–1693

    PubMed  CAS  Google Scholar 

  • Garces A, Atmakuri K, Chase MR et al (2010) EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 6:e1000957

    PubMed  Google Scholar 

  • Garufi G, Butler E, Missiakas D (2008) ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 190:7004–7011

    PubMed  CAS  Google Scholar 

  • Gey Van Pittius NC, Gamieldien J, Hide W et al (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G + C Gram-positive bacteria. Genome Biol 2:RESEARCH0044

    Google Scholar 

  • Gey van Pittius NC, Sampson SL, Lee H et al (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95

    PubMed  Google Scholar 

  • Gibbons HS, Wolschendorf F, Abshire M et al (2007) Identification of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent pathway. J Bacteriol 189:5090–5100

    PubMed  CAS  Google Scholar 

  • Gomez M, Johnson S, Gennaro ML (2000) Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun 68:2323–2327

    PubMed  CAS  Google Scholar 

  • Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J et al (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 3:e3496

    PubMed  Google Scholar 

  • Gordon BR, Li Y, Wang L et al (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:5154–5159

    PubMed  CAS  Google Scholar 

  • Griffin JE, Gawronski JD, Dejesus MA et al (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251

    PubMed  CAS  Google Scholar 

  • Harboe M, Oettinger T, Wiker HG et al (1996) Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect Immun 64:16–22

    PubMed  CAS  Google Scholar 

  • Hinchey J, Lee S, Jeon BY et al (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279–2288

    PubMed  CAS  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M et al (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967

    PubMed  CAS  Google Scholar 

  • Hou JM, D’Lima NG, Rigel NW et al (2008) ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol 190:4880–4887

    PubMed  CAS  Google Scholar 

  • Houben D, Demangel C, van Ingen J et al (2012a) ESX-1 Mediated Translocation to the Cytosol controls Virulence of Mycobacteria. Cell Microbiol 14:1287–1298

    PubMed  CAS  Google Scholar 

  • Houben EN, Bestebroer J, Ummels R et al (2012b) Composition of the type VII secretion system membrane complex. Mol Microbiol 86:472–484

    PubMed  CAS  Google Scholar 

  • Ilghari D, Lightbody KL, Veverka V et al (2011) Solution structure of the Mycobacterium tuberculosis EsxG.EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J Biol Chem 286:29993–30002

    PubMed  CAS  Google Scholar 

  • Jarlier V, Nikaido H (1990) Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172:1418–1423

    PubMed  CAS  Google Scholar 

  • Jensen K, Ranganathan UD, Van Rompay KK et al (2012) A recombinant attenuated Mycobacterium tuberculosis vaccine strain is safe in immunosuppressed SIV-infected infant macaques. Clin Vaccine Immunol 19:1170–1181

    PubMed  CAS  Google Scholar 

  • Krehenbrink M, Edwards A, Downie JA (2011) The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. Mol Microbiol 82:164–179

    PubMed  CAS  Google Scholar 

  • Kurtz S, McKinnon KP, Runge MS et al (2006) The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect Immun 74:6855–6864

    PubMed  CAS  Google Scholar 

  • Kusters I, Driessen AJ (2011) SecA, a remarkable nanomachine. Cell Mol Life Sci 68:2053–2066

    PubMed  CAS  Google Scholar 

  • Lenz LL, Portnoy DA (2002) Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol Microbiol 45:1043–1056

    PubMed  CAS  Google Scholar 

  • Lenz LL, Mohammadi S, Geissler A et al (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437

    PubMed  CAS  Google Scholar 

  • Leversen NA, de Souza GA, Malen H et al (2009) Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Microbiology 155:2375–2383

    PubMed  CAS  Google Scholar 

  • Lewis KN, Liao R, Guinn KM et al (2003) Deletion of RD1 from Mycobacterium tuberculosis mimics Bacille Calmette-Guerin attenuation. J Infect Dis 187:117–123

    PubMed  Google Scholar 

  • Lightbody KL, Renshaw PS, Collins ML et al (2004) Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol Lett 238:255–262

    PubMed  CAS  Google Scholar 

  • Luirink J, Yu Z, Wagner S et al (2012) Biogenesis of inner membrane proteins in Escherichia coli. Biochim Biophys Acta 1817:965–976

    PubMed  CAS  Google Scholar 

  • Luthra A, Mahmood A, Arora A et al (2008) Characterization of Rv3868, an essential hypothetical protein of the ESX-1 secretion system in Mycobacterium tuberculosis. J Biol Chem 283:36532–36541

    PubMed  CAS  Google Scholar 

  • MacGurn JA, Raghavan S, Stanley SA et al (2005) A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol Microbiol 57:1653–1663

    PubMed  CAS  Google Scholar 

  • Maciag A, Dainese E, Rodriguez GM et al (2007) Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 189:730–740

    PubMed  CAS  Google Scholar 

  • Maciag A, Piazza A, Riccardi G et al (2009) Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis. BMC Microbiol 9:48

    PubMed  Google Scholar 

  • Mahairas GG, Sabo PJ, Hickey MJ et al (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    PubMed  CAS  Google Scholar 

  • Malen H, Berven FS, Fladmark KE et al (2007) Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702–1718

    PubMed  Google Scholar 

  • Mangels D, Mathers J, Bolhuis A et al (2005) The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability. J Mol Biol 345:415–423

    PubMed  CAS  Google Scholar 

  • Marrichi M, Camacho L, Russell DG et al (2008) Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria. J Biol Chem 283:35223–35235

    PubMed  CAS  Google Scholar 

  • Matos CF, Di Cola A, Robinson C (2009) TatD is a central component of a Tat translocon-initiated quality control system for exported FeS proteins in Escherichia coli. EMBO Rep 10:474–479

    PubMed  CAS  Google Scholar 

  • McCann JR, McDonough JA, Sullivan JT et al (2011) Genome-wide identification of Mycobacterium tuberculosis exported proteins with roles in intracellular growth. J Bacteriol 193:854–861

    PubMed  CAS  Google Scholar 

  • McDonough JA, Hacker KE, Flores AR et al (2005) The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187:7667–7679

    PubMed  CAS  Google Scholar 

  • McDonough JA, McCann JR, Tekippe EM et al (2008) Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J Bacteriol 190:6428–6438

    PubMed  CAS  Google Scholar 

  • McLaughlin B, Chon JS, MacGurn JA et al (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 3:e105

    PubMed  Google Scholar 

  • Nagai S, Wiker HG, Harboe M et al (1991) Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun 59:372–382

    PubMed  CAS  Google Scholar 

  • Nouwen N, Piwowarek M, Berrelkamp G et al (2005) The large first periplasmic loop of SecD and SecF plays an important role in SecDF functioning. J Bacteriol 187:5857–5860

    PubMed  CAS  Google Scholar 

  • Ohol YM, Goetz DH, Chan K et al (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210–220

    PubMed  CAS  Google Scholar 

  • Owens MU, Swords WE, Schmidt MG et al (2002) Cloning, expression, and functional characterization of the Mycobacterium tuberculosis secA gene. FEMS Microbiol Lett 211:133–141

    PubMed  CAS  Google Scholar 

  • Palaniyandi K, Veerasamy M, Narayanan S (2012) Characterization of Ffh of Mycobacterium tuberculosis and its interaction with 4.5 S RNA. Microbiol Res 167:520–525

    PubMed  CAS  Google Scholar 

  • Pallen MJ (2002) The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol 10:209–212

    PubMed  CAS  Google Scholar 

  • Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483–496

    PubMed  CAS  Google Scholar 

  • Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40

    PubMed  CAS  Google Scholar 

  • Posey JE, Shinnick TM, Quinn FD (2006) Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol 188:1332–1340

    PubMed  CAS  Google Scholar 

  • Pym AS, Brodin P, Brosch R et al (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717

    PubMed  CAS  Google Scholar 

  • Pym AS, Brodin P, Majlessi L et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    PubMed  CAS  Google Scholar 

  • Raghavan S, Manzanillo P, Chan K et al (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717–721

    PubMed  CAS  Google Scholar 

  • Raman S, Puyang X, Cheng TY et al (2006) Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis. J Bacteriol 188:8460–8468

    PubMed  CAS  Google Scholar 

  • Renshaw PS, Panagiotidou P, Whelan A et al (2002) Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 277:21598–21603

    PubMed  CAS  Google Scholar 

  • Renshaw PS, Lightbody KL, Veverka V et al (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498

    PubMed  CAS  Google Scholar 

  • Rigel NW, Gibbons HS, McCann JR et al (2009) The accessory SecA2 system of mycobacteria requires ATP binding and the canonical SecA1. J Biol Chem 284:9927–9936

    PubMed  CAS  Google Scholar 

  • Riley R, Pellegrini M, Eisenberg D (2008) Identifying cognate binding pairs among a large set of paralogs: the case of PE/PPE proteins of Mycobacterium tuberculosis. PLoS Comput Biol 4:e1000174

    PubMed  Google Scholar 

  • Rodriguez GM, Voskuil MI, Gold B et al (2002) IdeR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381

    PubMed  CAS  Google Scholar 

  • Rose RW, Bruser T, Kissinger JC et al (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950

    PubMed  CAS  Google Scholar 

  • Rosenberger T, Brulle JK, Sander P (2012) A beta-lactamase based reporter system for ESX dependent protein translocation in mycobacteria. PLoS One 7:e35453

    PubMed  CAS  Google Scholar 

  • Rosenkrands I, King A, Weldingh K et al (2000) Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21:3740–3756

    PubMed  CAS  Google Scholar 

  • Saint-Joanis B, Demangel C, Jackson M et al (2006) Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases beta-lactam susceptibility and virulence. J Bacteriol 188:6669–6679

    PubMed  CAS  Google Scholar 

  • Sampson SL (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011:497203

    PubMed  Google Scholar 

  • Sani M, Houben EN, Geurtsen J et al (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794

    PubMed  Google Scholar 

  • Sayes F, Sun L, Di Luca M et al (2012) Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion -encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe 11:352–363

    PubMed  CAS  Google Scholar 

  • Serafini A, Boldrin F, Palu G et al (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344

    PubMed  CAS  Google Scholar 

  • Sharma V, Arockiasamy A, Ronning DR et al (2003) Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc Natl Acad Sci U S A 100:2243–2248

    PubMed  CAS  Google Scholar 

  • Shukla A, Pallen M, Anthony M et al (2010) The homodimeric GBS1074 from Streptococcus agalactiae. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:1421–1425

    CAS  Google Scholar 

  • Siboo IR, Chaffin DO, Rubens CE et al (2008) Characterization of the accessory Sec system of Staphylococcus aureus. J Bacteriol 190:6188–6196

    PubMed  CAS  Google Scholar 

  • Siegrist MS, Unnikrishnan M, McConnell MJ et al (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 106:18792–18797

    PubMed  Google Scholar 

  • Simeone R, Bobard A, Lippmann J et al (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8:e1002507

    PubMed  CAS  Google Scholar 

  • Smith J, Manoranjan J, Pan M et al (2008) Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76:5478–5487

    PubMed  CAS  Google Scholar 

  • Sonnenberg MG, Belisle JT (1997) Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun 65:4515–4524

    PubMed  CAS  Google Scholar 

  • Sorensen AL, Nagai S, Houen G et al (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63:1710–1717

    PubMed  CAS  Google Scholar 

  • Stanley SA, Raghavan S, Hwang WW et al (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100:13001–13006

    PubMed  CAS  Google Scholar 

  • Stinear TP, Seemann T, Harrison PF et al (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18:729–741

    PubMed  CAS  Google Scholar 

  • Stoop EJ, Schipper T, Huber SK et al (2011) Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech 4:526–536

    PubMed  CAS  Google Scholar 

  • Strong M, Sawaya MR, Wang S et al (2006) Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:8060–8065

    PubMed  CAS  Google Scholar 

  • Sullivan JT, Young EF, McCann JR et al (2012) The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun 80:996–1006

    PubMed  CAS  Google Scholar 

  • Sundaramoorthy R, Fyfe PK, Hunter WN (2008) Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J Mol Biol 383:603–614

    PubMed  CAS  Google Scholar 

  • Sweeney KA, Dao DN, Goldberg MF et al (2011) A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 17:1261–1268

    PubMed  CAS  Google Scholar 

  • Talaat AM, Lyons R, Howard ST et al (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101:4602–4607

    PubMed  CAS  Google Scholar 

  • Tarry MJ, Schafer E, Chen S et al (2009) Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 106:13284–13289

    PubMed  CAS  Google Scholar 

  • Taylor PD, Toseland CP, Attwood TK et al (2006) TATPred: a Bayesian method for the identification of twin arginine translocation pathway signal sequences. Bioinformation 1:184–187

    PubMed  Google Scholar 

  • Tekaia F, Gordon SV, Garnier T et al (1999) Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 79:329–342

    PubMed  CAS  Google Scholar 

  • Van den Berg B, Clemons WM Jr, Collinson I et al (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    PubMed  Google Scholar 

  • van der Wel N, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

    PubMed  Google Scholar 

  • Walters SB, Dubnau E, Kolesnikova I et al (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330

    PubMed  CAS  Google Scholar 

  • Weerdenburg EM, Abdallah AM, Mitra S et al (2012) ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cell Microbiol 14:728–739

    PubMed  CAS  Google Scholar 

  • Wexler M, Sargent F, Jack RL et al (2000) TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275:16717–16722

    PubMed  CAS  Google Scholar 

  • Zuber B, Chami M, Houssin C et al (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert Bitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Woude, A.D., Luirink, J., Bitter, W. (2012). Getting Across the Cell Envelope: Mycobacterial Protein Secretion. In: Pieters, J., McKinney, J. (eds) Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism. Current Topics in Microbiology and Immunology, vol 374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_298

Download citation

Publish with us

Policies and ethics