Skip to main content

Employing the Biology of Successful Fracture Repair to Heal Critical Size Bone Defects

  • Chapter
  • First Online:
New Perspectives in Regeneration

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 367))

Abstract

Bone has the natural ability to remodel and repair. Fractures and small noncritical size bone defects undergo regenerative healing via coordinated concurrent development of skeletal and vascular elements in a soft cartilage callus environment. Within this environment bone regeneration recapitulates many of the same cellular and molecular mechanisms that form embryonic bone. Angiogenesis is intimately involved with embryonic bone formation and with both endochondral and intramembranous bone formation in differentiated bone. During bone regeneration osteogenic cells are first associated with vascular tissue in the adjacent periosteal space or the adjacent injured marrow cavity that houses endosteal blood vessels. Critical size bone defects cannot heal without the assistance of therapeutic aids or materials designed to encourage bone regeneration. We discuss the prospects for using synthetic hydrogels in a bioengineering approach to repair critical size bone defects. Hydrogel scaffolds can be designed and fabricated to potentially trigger the same bone morphogenetic cascade that heals bone fractures and noncritical size defects naturally. Lastly, we introduce adult Xenopus laevis hind limb as a novel small animal model system for bone regeneration research. Xenopus hind limbs have been used successfully to screen promising scaffolds designed to heal critical size bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMPs:

Bone morphogenetic proteins

Cbfa1:

Core binding factor 1

CDMP-1:

Cartilage-derived morphogenetic protein-1

CSD:

Critical size defect

CXCR-4:

Receptor for SDF-1

ECM:

Extracellular matrix

FDA:

Food and Drug Administration

FGFs:

Fibroblast growth factors

GDF-5:

Growth/differentiation factor 5

GF-11:

Skeletal growth factor

HA:

Hydroxyapatite

HDDA:

1,6 Hexanediol diacrylate

HIFα:

Hypoxia-induced factor alpha

IGF:

Insulin-like growth factor

IHH:

Indian hedgehog

IL:

Interleukin

M-CSF:

Macrophage colony stimulating factor

MMP:

Metalloproteinase

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

OPG:

Osteoprotegerin

PDGF:

Platelet-derived growth factor

PTHrP:

Parathyroid hormone related peptide

RANKL:

Receptor activator of nuclear factor kappa-B ligand

SDF-1:

Stromal cell-derived factor-1

SHH:

Sonic hedgehog

TCP:

Tricalcium phosphate

TGFβ:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  • Bais MV, Wigner N, Young M, Toholka R, Graves DT, Morgan EF, Gerstenfeld LS, Einhorn TA (2009) BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 45:254–266

    Article  PubMed  CAS  Google Scholar 

  • Bianco P (2011a) Minireview: the stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology 152:2957–2962

    Article  PubMed  CAS  Google Scholar 

  • Bianco P (2011b) Bone and hematopoietic niche: a tale of two stem cells. Blood 117:5281–5288

    Article  PubMed  CAS  Google Scholar 

  • Carlevaro MF, Cermelli S, Cancedda R, Cancedda FD (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113:59–69

    PubMed  CAS  Google Scholar 

  • Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437

    Article  CAS  Google Scholar 

  • DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444

    Article  PubMed  CAS  Google Scholar 

  • Delong WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg Am 89:649–658

    Article  Google Scholar 

  • Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol 39:319–323

    Article  PubMed  Google Scholar 

  • Feng L, Milner D, Chunguang X, Nye HLD, Redwood P, Cameron JA, Stocum DL, Fang N, Jasiuk I (2011) Xenopus laevis as a novel model to study long bone critical size defect repair by growth factor mediated regeneration. Tissue Eng Part A 17:691–701

    Article  PubMed  CAS  Google Scholar 

  • Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Cullinane DM, Barnes GL (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54:1215–1228

    Article  PubMed  CAS  Google Scholar 

  • Goss RJ (1969) The genesis of form. In: Principles of regeneration. Academic Press, Inc., NY, p 166–170

    Google Scholar 

  • Hall BK (2003) Developmental and cellular origins of the amphibian skeleton. In: Heatwole H, Davies M (eds) Amphibian biology, vol 5., OsteologySurrey Beatty and Sons, Chipping Norton, pp 1551–1597

    Google Scholar 

  • Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. BioEssays 22:138–147

    Article  PubMed  CAS  Google Scholar 

  • Hannink G, Chris Arts JJ (2011) Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Inj-Int J Care Inj 42:522–525

    Google Scholar 

  • Hartmann C (2009) Transcriptional networks controlling skeletal development. Curr Opin Genet Dev 19:437–443

    Article  PubMed  CAS  Google Scholar 

  • Hutchison C, Pilote M, Roy S (2007) The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 40:45–56

    Article  PubMed  Google Scholar 

  • Jahagirdar R, Scammell BE (2009) Principles of fracture healing and disorders of bone union. Surgery (Oxford) 27:63–69

    Article  Google Scholar 

  • Kanczler JM, Oreffo ROC (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cells Mater 15:100–114

    CAS  Google Scholar 

  • Karsenty G, Kronenberg H, Settember C (2009) Genetic control of bone formation. Ann Rev Cell Dev Biol 25:629–648

    Article  CAS  Google Scholar 

  • Keramis NC, Callori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Inj-Int J Care Inj 39S2:S45–S57

    Google Scholar 

  • Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, Perka C, Buttgereit F, Duda GN (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B 16:427–433

    Article  Google Scholar 

  • Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F (2011) Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res 469:3118–3126

    Article  PubMed  Google Scholar 

  • Li G, Corsi-Payne K, Zheng B, Usas A, Peng H, Huard J (2009) The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation. Tissue Eng Part A 15:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23:47–55

    Article  CAS  Google Scholar 

  • Malizos KN, Papatheodorou LK (2005) The healing potential of the periosteum: molecular aspects. Inj-Int J Care Inj 36S:S13–S19

    Google Scholar 

  • Marsell R, Einhorn TA (2011) The biology of fracture healing. Inj-Int J Care Inj 42:551–555

    Google Scholar 

  • Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ (2012) Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev. doi:10.1016/j.addr.2012.05.006

    Google Scholar 

  • Miura S, Hanaoka K, Togashi S (2008) Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian. Bone 43:901–909

    Article  PubMed  CAS  Google Scholar 

  • Nikolaou E, Tsiridis E (2007) Minisymposium: fracture healing (i) Pathways and signaling molecules. Curr Orthop 21:249–257

    Article  Google Scholar 

  • Nomi M, Atala A, DeCoppi P, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Aspects Med 23:463–483

    Article  PubMed  CAS  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  PubMed  CAS  Google Scholar 

  • Ozaki A, Tsunoda M, Kinoshita S, Saura R (2000) Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 5:64–70

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Wright V, Usas A, Gearhart B, Shen H-C, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759

    PubMed  CAS  Google Scholar 

  • Phillips AM (2005) Overview of the fracture healing cascade. Inj-Int J Care Inj 36S:S5–S7

    Google Scholar 

  • Pritchard JJ, Ruzicka AJ (1950) Comparison of fracture repair in the frog, lizard, and rat. J Anat 84:236–261

    PubMed  CAS  Google Scholar 

  • Ripamonti U (2010) Soluble and insoluble signals sculpt osteogenesis in angiogenesis. World J Biol Chem 1:109–132

    Article  PubMed  Google Scholar 

  • Ripamonti U, Feretti C, Heliotis M (2006) Soluble and insoluble signals and the induction of bone formation: molecular therapeutics recapitulating development. J Anat 209:447–468

    Article  PubMed  CAS  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk C (2008) Vascularization in tissue engineering. Trends Biotech 26:434–441

    Article  CAS  Google Scholar 

  • Satoh A, Cummings GMC, Bryant SV, Gardiner DM (2010) Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 337:444–457

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk H-D, Lienau J, Duda GN (2011) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. doi:10.1007/s00441-011-1205-7

    PubMed  Google Scholar 

  • Shindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol 19:459–466

    Article  Google Scholar 

  • Slack JM, Lin G, Chen Y (2008) The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci 65:54–63

    Article  PubMed  CAS  Google Scholar 

  • Song F, Li B, Stocum DL (2010) Amphibians as research models for regenerative medicine. Organogenesis 6:141–150

    Article  PubMed  Google Scholar 

  • Stocum DL (2012) Regenerative therapies for musculoskeletal tissues. In: Regenerative biology and medicine, 2nd Edn. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS 99:9656–9661

    Article  PubMed  CAS  Google Scholar 

  • Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotech Bioeng 103:655–663

    Article  CAS  Google Scholar 

  • Towler DA (2007) Vascular biology and bone formation: hints from HIF. J Clin Invest 17:1477–1480

    Article  Google Scholar 

  • Towler DA (2008) The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep 6:67–71

    Article  PubMed  Google Scholar 

  • Towler DA (2011) Skeletal anabolism, PTH, and the bone-vascular axis. J Bone Miner Res 26:2579–2582

    Article  PubMed  Google Scholar 

  • Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Inj-Int J Care inj 38S1:S11–S25

    Google Scholar 

  • Willie BM, Petersen A, Schmidt-Bleek K, Cipitria A, Mehta M, Strube P, Lienau J, Wildemann B, Fratzl P, Duda G (2010) Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter 6:4976–4987

    Article  CAS  Google Scholar 

  • Wraighte PJ, Scammell BE (2007) Principles of fracture healing. Found Years 3:243–251

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of the National Science Foundation (IJ, NF, JC). A special thank you is due to Heidi Richter of Precision Graphics, Champaign IL, for creating the illustrations for Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Ann Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cameron, J.A., Milner, D.J., Lee, J.S., Cheng, J., Fang, N.X., Jasiuk, I.M. (2012). Employing the Biology of Successful Fracture Repair to Heal Critical Size Bone Defects. In: Heber-Katz, E., Stocum, D. (eds) New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, vol 367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_291

Download citation

Publish with us

Policies and ethics